(Midterm Problem 2)
Line 14: Line 14:
  
 
==Midterm Problem 2==
 
==Midterm Problem 2==
 +
 +
In Las Vegas
 +
 +
a.) compute the probability of losing the game
 +
 +
Ways to win the game
 +
 +
A A A.  There are 48 different ways to get all three Ace's
 +
 +
A A_, A _ A, or  _ A A.  There are 1,728 ways to get two Ace's and any other card. Three cards (say A A _) you have a 4 ways to get the first Ace and 3 ways to get the next Ace then 48 ways to get the last card.  Multiply them (4*3*48) and you get 576, then multiply that by 3, since there are three ways to get two Ace's.  and you get 1728.
 +
 +
A_ _,  A _ A, or _ _ A.  There are 27,072 ways of getting one Ace and two other non Ace cards.  Same logic as above.
 +
 +
Then you add 48+1,728+27,072 and you get 28,848.Now if you divide that by one minus the total number of outcomes of choosing any 3 cards (52*51*50) which equals 132,600.  So  103,751 / 132,600  you get about 78%
 +
 +
 +
b.)
 +
 
==Midterm Problem 3==
 
==Midterm Problem 3==
 
==Midterm Problem 4==
 
==Midterm Problem 4==

Revision as of 17:53, 2 November 2008

I'll put links here if anyone wants to provide solutions to the midterm.

Midterm Problem 1

Call An the number of binary strings of size n without double zeroes. We can put each of the strings in An in one of three separate groups:

  • Strings that begin with 10 or 11 (ie begin with 1): 1|(n-1 digits)
  • Strings that begin with 01: 01|(n-2 digits)
  • Strings that begin with 00: 00|(n-2 digits)

Clearly the third group has no members. Further if the entire string is assumed to have no double zeroes, then the (n-1 digits) and (n-2 digits) have no double zeroes either. Thus there are An-1 strings in the first group and An-2 strings in the second group.

Thus, An=An-1+An-2, and since A0=1, A1=2, this defines the recurrence relation.

Midterm Problem 2

In Las Vegas

a.) compute the probability of losing the game

Ways to win the game

A A A. There are 48 different ways to get all three Ace's

A A_, A _ A, or _ A A. There are 1,728 ways to get two Ace's and any other card. Three cards (say A A _) you have a 4 ways to get the first Ace and 3 ways to get the next Ace then 48 ways to get the last card. Multiply them (4*3*48) and you get 576, then multiply that by 3, since there are three ways to get two Ace's. and you get 1728.

A_ _, A _ A, or _ _ A. There are 27,072 ways of getting one Ace and two other non Ace cards. Same logic as above.

Then you add 48+1,728+27,072 and you get 28,848.Now if you divide that by one minus the total number of outcomes of choosing any 3 cards (52*51*50) which equals 132,600. So 103,751 / 132,600 you get about 78%


b.)

Midterm Problem 3

Midterm Problem 4

Midterm Problem 5

Midterm Problem 6

Midterm Problem 7

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood