(New page: == Question 1 == <math>\mathcal{F} (n^2u[n-2] - n^2 u[n+2]) = \sum^{\infty}_{n = -\infty}(n^2u[n-2] - n^2 u[n+2])e^{ j\omega n}\,</math> <math>=\sum^{\infty}_{n = -\infty}(n^2(u[n-2] - ...)
 
(Question 2)
Line 14: Line 14:
  
 
== Question 2 ==
 
== Question 2 ==
 +
<math>x(t) = \mathcal{F}^{-1} (\mathcal{X}(\omega)) \,</math>
 +
 +
<math>= \frac{1}{2\pi} \pi \mathcal{F}^{-1} (\delta(\omega + \omega _o) + \delta(\omega - \omega _o))</math>
 +
 +
<math>= \frac{1}{2}  \int^{\infty}_{-\infty} (\delta(\omega + \omega _o) + \delta(\omega - \omega _o)) e^{j\omega t} d\omega</math>
 +
 +
<math>= \frac{1}{2}  e^{j\omega _o t} \int^{\infty}_{-\infty} \delta(\omega + \omega _o) d\omega +  \frac{1}{2}  e^{-j\omega _o t} \int^{\infty}_{-\infty}\delta(\omega - \omega _o))  d\omega</math>
 +
 +
<math>= \frac{1}{2}  e^{j\omega _o t}  +  \frac{1}{2}  e^{-j\omega _o t}  d\omega</math>
 +
 +
<math>= \frac{1}{2} ( e^{j\omega _o t} + e^{-j\omega _o t} ) </math>
 +
 +
<math>= \cos(\omega _o t) \,</math>
 +
 +
 +
== Question 3==

Revision as of 16:15, 21 October 2008

Question 1

$ \mathcal{F} (n^2u[n-2] - n^2 u[n+2]) = \sum^{\infty}_{n = -\infty}(n^2u[n-2] - n^2 u[n+2])e^{ j\omega n}\, $

$ =\sum^{\infty}_{n = -\infty}(n^2(u[n-2] - u[n+2])e^{ j\omega n}\, $

$ = \sum^{2}_{n = -2}(n^2 e^{ j\omega n}\, $

$ = 4e^{2 j\omega } + 4e^{-2 j\omega } + e^{ j\omega } + e^{- j\omega }\, $

$ = 8\frac{e^{2 j\omega } + e^{-2 j\omega }}{2}+ 2\frac{e^{ j\omega } + e^{- j\omega }}{2} \, $

$ = 8\cos(2\omega) + 2\cos(-\omega)\, $

Question 2

$ x(t) = \mathcal{F}^{-1} (\mathcal{X}(\omega)) \, $

$ = \frac{1}{2\pi} \pi \mathcal{F}^{-1} (\delta(\omega + \omega _o) + \delta(\omega - \omega _o)) $

$ = \frac{1}{2} \int^{\infty}_{-\infty} (\delta(\omega + \omega _o) + \delta(\omega - \omega _o)) e^{j\omega t} d\omega $

$ = \frac{1}{2} e^{j\omega _o t} \int^{\infty}_{-\infty} \delta(\omega + \omega _o) d\omega + \frac{1}{2} e^{-j\omega _o t} \int^{\infty}_{-\infty}\delta(\omega - \omega _o)) d\omega $

$ = \frac{1}{2} e^{j\omega _o t} + \frac{1}{2} e^{-j\omega _o t} d\omega $

$ = \frac{1}{2} ( e^{j\omega _o t} + e^{-j\omega _o t} ) $

$ = \cos(\omega _o t) \, $


Question 3

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood