Line 4: Line 4:
  
 
There are even more modern examples of how technology is used to produce more food with less resources. A group of futuristic foods are gradually impacting our daily life. One popular food replacement project, Soylent, which was kickstarted by a group of entrepreneurs in silicon valley, has created a promising meal replacement drink. The beverage consists of extracted nutrients such as fats, proteins, vitamins, and carbohydrates from plants as well as other easily accessible food sources. The CEO of soylent stated that this three dollar meal replacement satisfies all of a person’s daily required nutrients. By reducing the cost of the food production, this high tech meal replacement consisting of alternative nutrient sources could drastically increase the carrying capacity of the environment, and increase the quality of life for the current population of the world. Because of all of these technological advancements, today in the majority of developed countries, instead of population growth being higher than food production as predicted by Malthus, the opposite has occurred. This means many developed countries today are actually producing food at a more rapid pace than the population growth rate in that country (Tushar). <br />
 
There are even more modern examples of how technology is used to produce more food with less resources. A group of futuristic foods are gradually impacting our daily life. One popular food replacement project, Soylent, which was kickstarted by a group of entrepreneurs in silicon valley, has created a promising meal replacement drink. The beverage consists of extracted nutrients such as fats, proteins, vitamins, and carbohydrates from plants as well as other easily accessible food sources. The CEO of soylent stated that this three dollar meal replacement satisfies all of a person’s daily required nutrients. By reducing the cost of the food production, this high tech meal replacement consisting of alternative nutrient sources could drastically increase the carrying capacity of the environment, and increase the quality of life for the current population of the world. Because of all of these technological advancements, today in the majority of developed countries, instead of population growth being higher than food production as predicted by Malthus, the opposite has occurred. This means many developed countries today are actually producing food at a more rapid pace than the population growth rate in that country (Tushar). <br />
Another criticism of the Malthusian Theory is that he failed to account for the role that other types of production played when it came to supporting a sizeable population with food. When making the prediction about the growth rate of food being arithmetic, Malthus used the basis that land was a limited resource. In his belief, this meant that the growth rate of food was much more limited than population growth which would inevitably result in a crisis. This did not come to pass however, because as countries such as England began to enter the Industrial Revolution, they began to focus on and use other natural and man-made resources (Tushar). This allowed people to shift total concentration from food production and led to global trade. Trade allows places with large populations to acquire food from others in the event that they do not have the resources and land to grow their own. Because of this, food has become more available to society than Malthus once predicted (Agarwal). There is some belief that Malthus overlooked this fact due to his attention being mainly focused on England and the problems faced there at the time. In this time period for example places such as the United States and Argentina were just starting to produce substantial amounts of food (Zafar). <br />
 
  
 
[[Category:MA279Fall2018Walther]]
 
[[Category:MA279Fall2018Walther]]

Revision as of 22:54, 2 December 2018

Food Supply Growth

Modern high tech solutions have greatly increased the rate of growth of the world’s food supply, contradicting Malthus’ belief that the food supply grows linearly over time. Throughout history, humanity has found clever solutions to fight food shortage. For example, in the 1940’s people were starving because pests and disease were decimating produce around the world. Scientists were soughts a solutions, and eventually responded to the famine with the discovery of DDT (dichloro-diphenyl-trichloroethane). DDT was the first synthetic insecticide to improve large scale crop production. It utilizes advanced chemical technology to control pest populations and to prevent them from destroying crops. According to R. Yeadon, DDT residues in soil and crops were calculated by GLC analysis at the end of each growing season and showed disappearance of at least 60 percent of the applied pesticide. Though DDT is now identified as a very lethal chemical, and is forbidden for any crop production, it did help the population in 1940s to overcome the starving issue.

There are even more modern examples of how technology is used to produce more food with less resources. A group of futuristic foods are gradually impacting our daily life. One popular food replacement project, Soylent, which was kickstarted by a group of entrepreneurs in silicon valley, has created a promising meal replacement drink. The beverage consists of extracted nutrients such as fats, proteins, vitamins, and carbohydrates from plants as well as other easily accessible food sources. The CEO of soylent stated that this three dollar meal replacement satisfies all of a person’s daily required nutrients. By reducing the cost of the food production, this high tech meal replacement consisting of alternative nutrient sources could drastically increase the carrying capacity of the environment, and increase the quality of life for the current population of the world. Because of all of these technological advancements, today in the majority of developed countries, instead of population growth being higher than food production as predicted by Malthus, the opposite has occurred. This means many developed countries today are actually producing food at a more rapid pace than the population growth rate in that country (Tushar).

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett