(Moved over from old Kiwi)
 
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
[[Category:ECE662]]
 +
[[Category:MLE]]
 +
[[Category:parameter estimation]]
 +
[[Category:binomial distribution]]
 +
[[Category:poisson distribution]]
 +
 +
=Examples of Parameter Estimation based on Maximum Likelihood (MLE): the binomial distribution and the poisson distribution=
 +
for [[ECE662:BoutinSpring08_Old_Kiwi|ECE662: Decision Theory]]
 +
 +
Complement to [[Lecture_7_Old_Kiwi|Lecture 7: "Comparison of Maximum likelihood (MLE) and Bayesian Parameter Estimation"]]
 +
----
 +
 
=== Bernoulli Distribution ===
 
=== Bernoulli Distribution ===
  
Line 17: Line 29:
 
<math>\hat{p}=\frac{\sum_{i=1}^{n}{x}_{i}}{n}=\frac{k}{n}</math>
 
<math>\hat{p}=\frac{\sum_{i=1}^{n}{x}_{i}}{n}=\frac{k}{n}</math>
  
 
+
----
 
=== Poisson Distribution ===
 
=== Poisson Distribution ===
  
Line 31: Line 43:
  
 
<math>\hat{\lambda}=\frac{\sum_{i=1}^{n}{x}_{i}}{n}</math>
 
<math>\hat{\lambda}=\frac{\sum_{i=1}^{n}{x}_{i}}{n}</math>
 +
----
 +
More examples: [[MLE_Examples:_Exponential_and_Geometric_Distributions_Old_Kiwi|Exponential and Geometric Distributions]]
 +
 +
Back to [[Lecture_7_Old_Kiwi|Lecture 7: "Comparison of Maximum likelihood (MLE) and Bayesian Parameter Estimation"]]
 +
 +
Back to [[ECE662:BoutinSpring08_Old_Kiwi|ECE662, Spring 2008, Prof. Boutin]]

Latest revision as of 10:14, 20 May 2013


Examples of Parameter Estimation based on Maximum Likelihood (MLE): the binomial distribution and the poisson distribution

for ECE662: Decision Theory

Complement to Lecture 7: "Comparison of Maximum likelihood (MLE) and Bayesian Parameter Estimation"


Bernoulli Distribution

Observations: k successes in n Bernoulli trials.

$ f(x)=\left(\frac{n!}{x!\left(n-x \right)!} \right){p}^{x}{\left(1-p \right)}^{n-x} $

$ L(p)=\prod_{i=1}^{n}f({x}_{i})=\prod_{i=1}^{n}\left(\frac{n!}{{x}_{i}!\left(n-{x}_{i} \right)!} \right){p}^{{x}_{i}}{\left(1-p \right)}^{n-{x}_{i}} $

$ L(p)=\left( \prod_{i=1}^{n}\left(\frac{n!}{{x}_{i}!\left(n-{x}_{i} \right)!} \right)\right){p}^{\sum_{i=1}^{n}{x}_{i}}{\left(1-p \right)}^{n-\sum_{i=1}^{n}{x}_{i}} $

$ lnL(p)=\sum_{i=1}^{n}{x}_{i}ln(p)+\left(n-\sum_{i=1}^{n}{x}_{i} \right)ln\left(1-p \right) $

$ \frac{dlnL(p)}{dp}=\frac{1}{p}\sum_{i=1}^{n}{x}_{i}+\frac{1}{1-p}\left(n-\sum_{i=1}^{n}{x}_{i} \right)=0 $

$ \left(1-\hat{p}\right)\sum_{i=1}^{n}{x}_{i}+p\left(n-\sum_{i=1}^{n}{x}_{i} \right)=0 $

$ \hat{p}=\frac{\sum_{i=1}^{n}{x}_{i}}{n}=\frac{k}{n} $


Poisson Distribution

Observations: $ {X}_{1}, {X}_{2}, {X}_{3}.....{X}_{n} $

$ f(x)=\frac{{\lambda}^{x}{e}^{-\lambda}}{x!} x=0, 1, 2, $...

$ L(\lambda)=\prod_{i=1}^{n}\frac{{\lambda}^{{x}_{i}}{e}^{-\lambda}}{{x}_{i}!} = {e}^{-n\lambda} \frac{{\lambda}^{\sum_{1}^{n}{x}_{i}}}{\prod_{i=1}^{n}{x}_{i}} $

$ lnL(\lambda)=-n\lambda+\sum_{1}^{n}{x}_{i}ln(\lambda)-ln\left(\prod_{i=1}^{n}{x}_{i}\right) $

$ \frac{dlnL(\lambda)}{dp}=-n+\sum_{1}^{n}{x}_{i}\frac{1}{\lambda} $

$ \hat{\lambda}=\frac{\sum_{i=1}^{n}{x}_{i}}{n} $


More examples: Exponential and Geometric Distributions

Back to Lecture 7: "Comparison of Maximum likelihood (MLE) and Bayesian Parameter Estimation"

Back to ECE662, Spring 2008, Prof. Boutin

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010