Revision as of 14:40, 16 March 2008 by Svenkata (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
    • Exponential Distribution**

Let <img alt="tex:{X}_{1}, {X}_{2}, {X}_{3}.....{X}_{n}" /> be a random sample from the exponential distribution with p.d.f.

<img alt="tex:f(x;\theta)=\frac{1}{\theta}{e}^{\frac{-x}{\theta}} 0<x<\infty, \theta\in\Omega=\{\theta|0<\theta<\infty\}" />

The likelihood function is given by: <img alt="tex:L(\theta)=L\left(\theta;{x}_{1},{x}_{2}...{x}_{n} \right)=\left(\frac{1}{\theta}{e}^{\frac{{-x}_{1}}{\theta}}\right)\left(\frac{1}{\theta}{e}^{\frac{{-x}_{2}}{\theta}}\right)...\left(\frac{1}{\theta}{e}^{\frac{{-x}_{n}}{\theta}} \right)=\frac{1}{{\theta}^{n}}exp\left(\frac{-\sum_{1}^{n}{x}_{i}}{\theta} \right)" /> Taking log, we get,

<img alt="tex:lnL\left(\theta\right)=-\left(n \right)ln\left(\theta\right) -\frac{1}{\theta}\sum_{1}^{n}{x}_{i}, 0<\theta<\infty" />

Differentiating the above expression, and equating to zero, we get

<img alt="tex:\frac{d\left[lnL\left(\theta\right) \right]}{d\theta}=\frac{-\left(n \right)}{\left(\theta\right)} +\frac{1}{{\theta}^{2}}\sum_{1}^{n}{x}_{i}=0" />

The solution of equation for <img alt="tex:\theta" /> is:

<img alt="tex:\theta=\frac{\sum_{1}^{n}{x}_{i}}{n}" />

Thus, the maximum likelihood estimator of <img alt="tex:\Theta" /> is

<img alt="tex:\Theta=\frac{\sum_{1}^{n}{X}_{i}}{n}" />


    • Geometric Distribution**

Let <img alt="tex:{X}_{1}, {X}_{2}, {X}_{3}.....{X}_{n}" /> be a random sample from the geometric distribution with p.d.f.

<img alt="tex:f\left(x;p \right)={\left(1-p \right)}^{x-1}p, x=1,2,3...." />

The likelihood function is given by: <img alt="tex:L\left(p \right)={\left(1-p \right)}^{{x}_{1}-1}p {\left(1-p \right)}^{{x}_{2}-1}p...{\left(1-p \right)}^{{x}_{n}-1}p ={p}^{n}{\left(1-p \right)}^{\sum_{1}^{n}{x}_{i}-n}" />

Taking log,

<img alt="tex:lnL\left(p \right)= nln{p}+\left(\sum_{1}^{n}{x}_{i}-n \right)ln{\left(1-p \right)} " />

Differentiating and equating to zero, we get,

<img alt="tex:\frac{d\left[lnL\left(p \right)\right]}{dp}=\frac{n}{p} -\frac{\left(\sum_{1}^{n}{x}_{i}-n \right)}{\left(1-p \right)}=0" />

Therefore, <img alt="tex:p=\frac{n}{\left(\sum_{1}^{n}{x}_{i} \right)}" />

So, the maximum likelihood estimator of P is:

<img alt="tex:P=\frac{n}{\left(\sum_{1}^{n}{X}_{i} \right)}=\frac{1}{X}" />

This agrees with the intuition because, in n observations of a geometric random variable, there are n successes in the <img alt="tex:\sum_{1}^{n}{X}_{i}" /> trials. Thus the estimate of p is the number of successes divided by the total number of trials.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang