(New page: Suppose <math>f \in L^{1}(\mathbb{R})</math> satisfies <math>f*f=f</math>. Show that <math>f=0</math>. ---- <math>\hat{f} = \widehat{f*f} = \hat{f}^2</math> by problem 2. Now <math>(\ha...)
 
Line 1: Line 1:
 +
Sneak through the inky black night back to [[The_Ninja%27s_Solutions]]
 +
 
Suppose <math>f \in L^{1}(\mathbb{R})</math> satisfies <math>f*f=f</math>. Show that <math>f=0</math>.
 
Suppose <math>f \in L^{1}(\mathbb{R})</math> satisfies <math>f*f=f</math>. Show that <math>f=0</math>.
  

Revision as of 09:09, 29 July 2009

Sneak through the inky black night back to The_Ninja's_Solutions

Suppose $ f \in L^{1}(\mathbb{R}) $ satisfies $ f*f=f $. Show that $ f=0 $.


$ \hat{f} = \widehat{f*f} = \hat{f}^2 $ by problem 2.

Now $ (\hat{f}(\xi))(\hat{f}(\xi)-1)=0 $ so $ \hat{f} = \chi_{A} $ for some set $ A $

But problem 5 gives $ \hat{f} $ is continuous and the limit is zero, hence $ \hat{f}\equiv 0 $

Applying an inverse fourier transfom gives $ f = 0 $ a.e.

$ f = f*f = \int_{\mathbb{R}} f(x-y)f(y)dy = 0 $ because the integral of something that is zero a.e. is zero.

~Ben Bartle

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett