(New page: 7.2 Define the Fourier transform of <math>f \in L^1(\mathbb{R})</math> by <math>\widehat{f}(x) = \int_{-\infty}^{\infty} f(t) e^{-ixt}dt</math> If <math>f</math>, <math>g \in L(\mathbb{R...)
 
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
7.2 Define the Fourier transform of <math>f \in L^1(\mathbb{R})</math> by
+
[[Category:MA598RSummer2009pweigel]]
 +
[[Category:MA598]]
 +
[[Category:math]]
 +
[[Category:problem solving]]
 +
[[Category:real analysis]]
 +
 
 +
== Problem #7.2, MA598R, Summer 2009, Weigel ==
 +
Define the Fourier transform of <math>f \in L^1(\mathbb{R})</math> by
  
 
<math>\widehat{f}(x) = \int_{-\infty}^{\infty} f(t) e^{-ixt}dt</math>
 
<math>\widehat{f}(x) = \int_{-\infty}^{\infty} f(t) e^{-ixt}dt</math>
Line 6: Line 13:
  
 
<math>\widehat{f * g}(x) = \widehat{f}(x)\widehat{g}(x)</math>
 
<math>\widehat{f * g}(x) = \widehat{f}(x)\widehat{g}(x)</math>
 
+
----
Proof. Applying the definitions of Fourier transform and convolution, followed by Fubini (since <math>f, g \in L(\mathbb{R})</math>) we have:
+
==Proof==
 +
Applying the definitions of Fourier transform and convolution, followed by Fubini (since <math>f, g \in L(\mathbb{R})</math>) we have:
  
 
<math>\begin{align}\widehat{f * g}(x) &= \int_{\mathbb{R}}(f * g)(t)e^{-ixt}dt\\
 
<math>\begin{align}\widehat{f * g}(x) &= \int_{\mathbb{R}}(f * g)(t)e^{-ixt}dt\\
Line 16: Line 24:
 
&= \widehat{f}(x)\widehat{g}(x)
 
&= \widehat{f}(x)\widehat{g}(x)
 
\end{align}</math>
 
\end{align}</math>
 +
----
 +
[[The_Ninja%27s_Solutions|Back to Ninja Solutions]]
 +
 +
[[MA_598R_pweigel_Summer_2009_Lecture_7|Back to Assignment 7]]
 +
 +
[[MA598R_%28WeigelSummer2009%29|Back to MA598R Summer 2009]]

Latest revision as of 05:52, 11 June 2013


Problem #7.2, MA598R, Summer 2009, Weigel

Define the Fourier transform of $ f \in L^1(\mathbb{R}) $ by

$ \widehat{f}(x) = \int_{-\infty}^{\infty} f(t) e^{-ixt}dt $

If $ f $, $ g \in L(\mathbb{R}) $, show

$ \widehat{f * g}(x) = \widehat{f}(x)\widehat{g}(x) $


Proof

Applying the definitions of Fourier transform and convolution, followed by Fubini (since $ f, g \in L(\mathbb{R}) $) we have:

$ \begin{align}\widehat{f * g}(x) &= \int_{\mathbb{R}}(f * g)(t)e^{-ixt}dt\\ &= \int_{\mathbb{R}}\left(\int_{\mathbb{R}}f(t-y)g(y)dy\right)e^{-ixt}dt\\ &= \int_{\mathbb{R}}g(y)\left(\int_{\mathbb{R}}f(t-y)e^{-ixt}dt\right)dy\\ &= \int_{\mathbb{R}}g(y)e^{-ixy}\left(\int_{\mathbb{R}}f(t-y)e^{-ix(t-y)}dt\right)dy\\ &= \int_{\mathbb{R}}g(y)e^{-ixy}\widehat{f}(x)dy\\ &= \widehat{f}(x)\widehat{g}(x) \end{align} $


Back to Ninja Solutions

Back to Assignment 7

Back to MA598R Summer 2009

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett