Revision as of 15:12, 3 October 2009 by Dknott01 (Talk | contribs)

MA 366: Ordinary Differential Equations

Differential equations, which state a relation between a function and its derivatives, appear constantly in physics, chemistry, engineering, biology, and whatever other sufficiently mathematical science one can think of, and the more difficult ones continue to be an active area of mathematical research. Solving differential equations, as you will see in this course, proves to be an endeavor requiring a variety of techniques, and far more frequently than you would prefer, no simple formula exists for deriving the desired solution.

The differential equations you will study in this course are broken up into different families according to which techniques lead to their solutions.

Separable Equations

If the differential equation in question can be written as

$ M(t)dt=N(y)dy $

then the equation is called separable. The name refers to your ability to separate the function y and the dependent variable t, with all of the t's and dt's on one side and all of the y's and dy's on the other. If, by using a little bit of algebra, you can get your equation into this form, then you can simply integrate both sides to find the solution. Integrate the left side with respect to t, and the right side with respect to y, and your differential equation will turn into something more familiar and useful. Unfortunately, very few equations are separable, and you'll soon find yourself pining for them as you're forced to use much more involved methods of solution.

Linear Equations and Integrating Factors

(Note): Firstly, in case you've forgotten, y' means dy/dt unless otherwise stated. The two expressions are interchangeable (so long as you are consistently differentiating with respect to t). Which one you use just depends on what your purposes are; you'll know which one to use in practice.

Suppose that, through some sort of algebraic manipulation, you can get your differential equation into the following form:

$ y'+p(t)y=g(t) $

This is called the "general first order linear equation". The important thing to remember here is that the functions p(t) and g(t) are NOT functions of y; they are ONLY functions of the independent variable t. There is a neat trick to solving these equations. First, make sure your equation is in the form displayed above. What you'll do now is multiply both sides of the equation by what is called the integrating factor. The integrating factor is defined as follows:

$ \mu\,=e^{\int p(t)\,dt}, $

Once you've done that, you'll find that the left side of the equation is always the derivative of a product. You can now integrate both sides of the equation, and then the most you have left is some algebra. Your text will most likely contain a thorough explanation of why the integrating factor produces the derivative of a product, and you should probably read it just to see why it works. Let's do an example to see the technique in action.

Suppose the differential equation given is

$ ty'+2y=4t^{2} $

Remember that we want our equation to be in the form mentioned above; that is, y' + p(t)y = g(t). We see that the y' term is not by itself: there's a "t" attached to it. So let's divide by t. We get:

$ y'+\frac{2}{t}\,y=4t $

Now our equation is in the form we want. We can see that

$ p(t)=\frac{2}{t}\, $

Therefore, our integrating factor is

$ \mu\,=e^{\int \frac{2}{t}\,dt} $

Evaluate the integral to get:

$ \mu\,=e^{2ln|t|}=(e^{ln|t|})^{2}=(t)^{2}=t^{2} $

So our integrating factor is t^2. Always simplify your integrating factor BEFORE you multiply both sides of your differential equation by it. Now, let's multiply both sides of our equation by t^2. We get:

$ t^{2}y'+2ty=4t^{3} $

And here's where the weird part happens. Look at the left side of the equation. I told you that it would turn out to be the derivative of a product. Remember that the derivative of a product pq is pq'+p'q. With that in mind, what function do you think, when differentiated, will give the left side of the equation? Here's the answer.

$ t^{2}y'+2ty=(t^{2}y)' $

(Under construction; more to be added soon)

Back to the Meta Course List

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch