Revision as of 07:22, 6 May 2011 by Joseph (Talk | contribs)

Linearity

There are three definitions we discussed in class for linearity.

Definition 1

A system is called linear if for any constants $ a,b\in $  all complex numbers and for any input signals x1(t),x2(t) with response y1(t),y2(t), respectively, the system's response to a'x1(t) + bx2(t)</span>is <span class="texhtml" />a'y<b>1(t) + b'''y2(t).

Definition 2

If

$ x_1(t) \rightarrow \begin{bmatrix} system \end{bmatrix} \rightarrow y_1(t) $

$ x_2(t) \rightarrow \begin{bmatrix} system \end{bmatrix} \rightarrow y_2(t) $

then

$ ax_1(t) + bx_2(t) \rightarrow \begin{bmatrix} system \end{bmatrix} \rightarrow ay_1(t) + by_2(t) $

for any $ a,b\in $  all complex numbers, any $ x_1(t), x_2(t) $ then we say the system is linear.

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics