Line 1: Line 1:
= Linearity  =
+
=== Linearity  ===
 +
 
 +
== Theory  ==
  
 
There are three definitions we discussed in class for linearity.  
 
There are three definitions we discussed in class for linearity.  
Line 5: Line 7:
 
<u></u>'''<u>Definition 1</u>'''  
 
<u></u>'''<u>Definition 1</u>'''  
  
<u></u>A system is called '''linear''' if for any constants <math>a,b\in </math>&nbsp; ''all complex numbers'' and for any input signals <span class="texhtml">''x''<sub>1</sub>(''t''),''x''<sub>2</sub>(''t'')</span> with response <span class="texhtml">''y''<sub>1</sub>(''t''),''y''<sub>2</sub>(''t'')</span>, respectively, the system's response to <span class="texhtml">''ax''<sub>1</sub>(''t'') + ''b''x''<sub>2</sub>(''t'')''&nbsp;''is ''ay''<sub>1</sub>(''t'') + ''b''y''<sub>2</sub>(''t'').&nbsp;</span>
+
<u></u>A system is called '''linear''' if for any constants <math>a,b\in </math>&nbsp; ''all complex numbers'' and for any input signals <span class="texhtml">''x''<sub>1</sub>(''t''),''x''<sub>2</sub>(''t'')</span> with response <span class="texhtml">''y''<sub>1</sub>(''t''),''y''<sub>2</sub>(''t'')</span>, respectively, the system's response to <span class="texhtml">''ax''<sub>1</sub>(''t'') + ''b''x''<sub>2</sub>(''t'')''&nbsp;''is ''ay''<sub>1</sub>(''t'') + ''b''y''<sub>2</sub>(''t'').&nbsp;</span>  
  
'''
+
'''<u>Definition 2</u>'''
<u>Definition 2</u>  
+
  
 
If  
 
If  
Line 20: Line 21:
 
<math> ax_1(t) + bx_2(t) \rightarrow \begin{bmatrix} system \end{bmatrix} \rightarrow ay_1(t) + by_2(t) </math>  
 
<math> ax_1(t) + bx_2(t) \rightarrow \begin{bmatrix} system \end{bmatrix} \rightarrow ay_1(t) + by_2(t) </math>  
  
<span class="Apple-style-span" style="font-weight: normal;">for any <math>a,b\in </math>&nbsp; </span>''<span class="Apple-style-span" style="font-weight: normal;">all complex numbers</span>''<span class="Apple-style-span" style="font-weight: normal;">, any </span><span class="texhtml">''<span class="Apple-style-span" style="font-weight: normal;">x</span>''<sub><span class="Apple-style-span" style="font-weight: normal;">1</span></sub><span class="Apple-style-span" style="font-weight: normal;">(</span>''<span class="Apple-style-span" style="font-weight: normal;">t</span>''<span class="Apple-style-span" style="font-weight: normal;">),</span>''<span class="Apple-style-span" style="font-weight: normal;">x</span>''<sub><span class="Apple-style-span" style="font-weight: normal;">2</span></sub><span class="Apple-style-span" style="font-weight: normal;">(</span>''<span class="Apple-style-span" style="font-weight: normal;">t</span>''<span class="Apple-style-span" style="font-weight: normal;">)</span></span><span class="Apple-style-span" style="font-weight: normal;"> then we say the system is</span> '''linear'''.  
+
for any <math>a,b\in </math>&nbsp; ''all complex numbers'', any <span class="texhtml">''x''<sub>1</sub>(''t''),''x''<sub>2</sub>(''t'')</span> then we say the system is '''linear'''.  
 +
 
 +
'''<u>Definition 3</u>'''
 +
 
 +
<u></u>[[Image:Slide1.jpg]]<br>
  
<u>Definition 3</u>
+
== Applications  ==
'''
+
  
<u></u>A system is''''''linear''''''
+
Linearity can be used simplify the Fourier transform. &nbsp;Integration and differentiation are also linear. &nbsp;Once a non-linear system is made linear, complex systems are easier to model mathematically. &nbsp;

Revision as of 07:35, 6 May 2011

Linearity

Theory

There are three definitions we discussed in class for linearity.

Definition 1

A system is called linear if for any constants $ a,b\in $  all complex numbers and for any input signals x1(t),x2(t) with response y1(t),y2(t), respectively, the system's response to ax1(t) + bx2(t) is ay1(t) + by2(t). 

Definition 2

If

$ x_1(t) \rightarrow \begin{bmatrix} system \end{bmatrix} \rightarrow y_1(t) $

$ x_2(t) \rightarrow \begin{bmatrix} system \end{bmatrix} \rightarrow y_2(t) $

then

$ ax_1(t) + bx_2(t) \rightarrow \begin{bmatrix} system \end{bmatrix} \rightarrow ay_1(t) + by_2(t) $

for any $ a,b\in $  all complex numbers, any x1(t),x2(t) then we say the system is linear.

Definition 3

Slide1.jpg

Applications

Linearity can be used simplify the Fourier transform.  Integration and differentiation are also linear.  Once a non-linear system is made linear, complex systems are easier to model mathematically.  

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang