(Linear Discriminant Functions)
m
Line 1: Line 1:
[http://balthier.ecn.purdue.edu/index.php/ECE662 ECE662 Main Page]
 
  
[http://balthier.ecn.purdue.edu/index.php/ECE662#Class_Lecture_Notes Class Lecture Notes]
 
  
 
== Lecture Objective ==
 
== Lecture Objective ==
Line 85: Line 83:
 
[[Parametric Estimators_Old Kiwi]]
 
[[Parametric Estimators_Old Kiwi]]
  
== Lectures ==
+
[[Category:Lecture Notes]]
[http://balthier.ecn.purdue.edu/index.php/Lecture_1_-_Introduction 1] [http://balthier.ecn.purdue.edu/index.php/Lecture_2_-_Decision_Hypersurfaces 2] [http://balthier.ecn.purdue.edu/index.php/Lecture_3_-_Bayes_classification 3]
+
[http://balthier.ecn.purdue.edu/index.php/Lecture_4_-_Bayes_Classification 4] [http://balthier.ecn.purdue.edu/index.php/Lecture_5_-_Discriminant_Functions 5] [http://balthier.ecn.purdue.edu/index.php/Lecture_6_-_Discriminant_Functions 6] [http://balthier.ecn.purdue.edu/index.php/Lecture_7_-_MLE_and_BPE 7] [http://balthier.ecn.purdue.edu/index.php/Lecture_8_-_MLE%2C_BPE_and_Linear_Discriminant_Functions 8] [http://balthier.ecn.purdue.edu/index.php/Lecture_9_-_Linear_Discriminant_Functions 9] [http://balthier.ecn.purdue.edu/index.php/Lecture_10_-_Batch_Perceptron_and_Fisher_Linear_Discriminant 10] [http://balthier.ecn.purdue.edu/index.php/Lecture_11_-_Fischer%27s_Linear_Discriminant_again 11] [http://balthier.ecn.purdue.edu/index.php/Lecture_12_-_Support_Vector_Machine_and_Quadratic_Optimization_Problem 12] [http://balthier.ecn.purdue.edu/index.php/Lecture_13_-_Kernel_function_for_SVMs_and_ANNs_introduction 13] [http://balthier.ecn.purdue.edu/index.php/Lecture_14_-_ANNs%2C_Non-parametric_Density_Estimation_%28Parzen_Window%29 14] [http://balthier.ecn.purdue.edu/index.php/Lecture_15_-_Parzen_Window_Method 15] [http://balthier.ecn.purdue.edu/index.php/Lecture_16_-_Parzen_Window_Method_and_K-nearest_Neighbor_Density_Estimate 16] [http://balthier.ecn.purdue.edu/index.php/Lecture_17_-_Nearest_Neighbors_Clarification_Rule_and_Metrics 17] [http://balthier.ecn.purdue.edu/index.php/Lecture_18_-_Nearest_Neighbors_Clarification_Rule_and_Metrics%28Continued%29 18]
+
[http://balthier.ecn.purdue.edu/index.php/Lecture_19_-_Nearest_Neighbor_Error_Rates 19]
+
[http://balthier.ecn.purdue.edu/index.php/Lecture_20_-_Density_Estimation_using_Series_Expansion_and_Decision_Trees 20]
+

Revision as of 22:09, 6 April 2008


Lecture Objective

  • Maximum Likelihood Estimation and Bayesian Parameter Estimation
  • Linear Discriminant Functions

Maximum Likelihood Estimation and Bayesian Parameter Estimation

MLEvBPE comparison Old Kiwi.jpg

If the prior distributions have some specific properties then the Bayesian Parameter Estimation and Maximum Likelihood Estimation are asymptotically equivalent for infinite training data. However, large training datasets are typically unavailable in pattern recognition problems. Furthermore, when the dimension of data increases, the complexity of estimating the parameters increases exponentially. In that aspect, BPE and MLE have some advantages over each other.

  • Computational Complexity:

MLE has a better performance than BPE for large data, because MLE simply uses gradient or differential calculus to estimate the parameters. On the other hand, BPE uses high dimensional integration and it's computationally expensive.

  • Interpretability:

The results of MLE are easier to interpret because it generates a single model to fit the data as much as possible. However, BPE generates a weighted sum of models which is harder to understand.

  • Form of Distribution:

The advantage of using BPE is that it uses prior information that we have about the model and it gives us a possibility to sequentially update the model. If the information we have on the model is reliable than BPE is better than MLE. On the other hand, if prior model is uniformly distributed than BPE is not so different than MLE. Indeed, MLE is a special and simplistic form of BPE.

Figure for BPE processes: BPEprocess Old Kiwi.jpg

See also: Comparison of MLE and Bayesian Parameter Estimation_Old Kiwi

Linear Discriminant Functions

(From DHS Chapter 5)

Lec8LDF Old Kiwi.jpg

Suppose we have $ p(w_1|\vec{x}) $ and $ p(w_2|\vec{x}) $

$ g(\vec{x}) = p(w_1|\vec{x}) - p(w_2|\vec{x}) $

$ p(\vec{x}|w_i) $ -> Parametric Estimation Method

$ g(\vec{x}) $ -> proper form of Linear Discriminant Function

$ [1,x,x^2,x^3] $ -> new feature space

Simple and easy to design:

  • 1 category case:

Lec8 1 Old Kiwi.jpg

$ g(\vec{x}) = w\vec{x} + w_0 $

where $ w $ is the weight factor and $ w_0 $ is the bias of the threshold

  • 2 category case:

$ w_1, g(\vec{x}) > 0 $

$ w_2, g(\vec{x}) < 0 $

$ g(\vec{x}) = 0 $ : decision surface

Lec8 2 Old Kiwi.jpg

$ g(\vec{x_1}) = w'\vec{x_1} + w_0 $

$ g(\vec{x_2}) = w'\vec{x_2} + w_0 $

$ w'\vec{x_1} + w_0 = w'\vec{x_2} + w_0 $

$ w'(\vec{x_1} - \vec{x_2}) = 0 $

  • N category case:

Lec8 3 Old Kiwi.jpg

$ \vec{x} = \vec{x_p} + r\frac{\vec{w}}{|\vec{w}|} $

where $ \vec{x_p} $ is the projection point, $ r $ is the distance, and $ \frac{\vec{w}}{|\vec{w}|} $ is the unit normal

$ g(\vec{x}) = w'\vec{x} + w_0 = w'(\vec{x_p} + r\frac{\vec{w}}{|\vec{w}|}) + w_0 = w'\vec{x_p} + w_0 + w'r\frac{\vec{w}}{|\vec{w}|} = r|\vec{w}| $

therefore $ r = \frac{g(\vec{x})}{|\vec{w}|} $

For more information:

Parametric Estimators_Old Kiwi

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang