(Linear Discriminant Functions)
(Lectures)
Line 88: Line 88:
 
[http://balthier.ecn.purdue.edu/index.php/Lecture_1_-_Introduction 1] [http://balthier.ecn.purdue.edu/index.php/Lecture_2_-_Decision_Hypersurfaces 2] [http://balthier.ecn.purdue.edu/index.php/Lecture_3_-_Bayes_classification 3]
 
[http://balthier.ecn.purdue.edu/index.php/Lecture_1_-_Introduction 1] [http://balthier.ecn.purdue.edu/index.php/Lecture_2_-_Decision_Hypersurfaces 2] [http://balthier.ecn.purdue.edu/index.php/Lecture_3_-_Bayes_classification 3]
 
[http://balthier.ecn.purdue.edu/index.php/Lecture_4_-_Bayes_Classification 4] [http://balthier.ecn.purdue.edu/index.php/Lecture_5_-_Discriminant_Functions 5] [http://balthier.ecn.purdue.edu/index.php/Lecture_6_-_Discriminant_Functions 6] [http://balthier.ecn.purdue.edu/index.php/Lecture_7_-_MLE_and_BPE 7] [http://balthier.ecn.purdue.edu/index.php/Lecture_8_-_MLE%2C_BPE_and_Linear_Discriminant_Functions 8] [http://balthier.ecn.purdue.edu/index.php/Lecture_9_-_Linear_Discriminant_Functions 9] [http://balthier.ecn.purdue.edu/index.php/Lecture_10_-_Batch_Perceptron_and_Fisher_Linear_Discriminant 10] [http://balthier.ecn.purdue.edu/index.php/Lecture_11_-_Fischer%27s_Linear_Discriminant_again 11] [http://balthier.ecn.purdue.edu/index.php/Lecture_12_-_Support_Vector_Machine_and_Quadratic_Optimization_Problem 12] [http://balthier.ecn.purdue.edu/index.php/Lecture_13_-_Kernel_function_for_SVMs_and_ANNs_introduction 13] [http://balthier.ecn.purdue.edu/index.php/Lecture_14_-_ANNs%2C_Non-parametric_Density_Estimation_%28Parzen_Window%29 14] [http://balthier.ecn.purdue.edu/index.php/Lecture_15_-_Parzen_Window_Method 15] [http://balthier.ecn.purdue.edu/index.php/Lecture_16_-_Parzen_Window_Method_and_K-nearest_Neighbor_Density_Estimate 16] [http://balthier.ecn.purdue.edu/index.php/Lecture_17_-_Nearest_Neighbors_Clarification_Rule_and_Metrics 17] [http://balthier.ecn.purdue.edu/index.php/Lecture_18_-_Nearest_Neighbors_Clarification_Rule_and_Metrics%28Continued%29 18]
 
[http://balthier.ecn.purdue.edu/index.php/Lecture_4_-_Bayes_Classification 4] [http://balthier.ecn.purdue.edu/index.php/Lecture_5_-_Discriminant_Functions 5] [http://balthier.ecn.purdue.edu/index.php/Lecture_6_-_Discriminant_Functions 6] [http://balthier.ecn.purdue.edu/index.php/Lecture_7_-_MLE_and_BPE 7] [http://balthier.ecn.purdue.edu/index.php/Lecture_8_-_MLE%2C_BPE_and_Linear_Discriminant_Functions 8] [http://balthier.ecn.purdue.edu/index.php/Lecture_9_-_Linear_Discriminant_Functions 9] [http://balthier.ecn.purdue.edu/index.php/Lecture_10_-_Batch_Perceptron_and_Fisher_Linear_Discriminant 10] [http://balthier.ecn.purdue.edu/index.php/Lecture_11_-_Fischer%27s_Linear_Discriminant_again 11] [http://balthier.ecn.purdue.edu/index.php/Lecture_12_-_Support_Vector_Machine_and_Quadratic_Optimization_Problem 12] [http://balthier.ecn.purdue.edu/index.php/Lecture_13_-_Kernel_function_for_SVMs_and_ANNs_introduction 13] [http://balthier.ecn.purdue.edu/index.php/Lecture_14_-_ANNs%2C_Non-parametric_Density_Estimation_%28Parzen_Window%29 14] [http://balthier.ecn.purdue.edu/index.php/Lecture_15_-_Parzen_Window_Method 15] [http://balthier.ecn.purdue.edu/index.php/Lecture_16_-_Parzen_Window_Method_and_K-nearest_Neighbor_Density_Estimate 16] [http://balthier.ecn.purdue.edu/index.php/Lecture_17_-_Nearest_Neighbors_Clarification_Rule_and_Metrics 17] [http://balthier.ecn.purdue.edu/index.php/Lecture_18_-_Nearest_Neighbors_Clarification_Rule_and_Metrics%28Continued%29 18]
 +
[http://balthier.ecn.purdue.edu/index.php/Lecture_19_-_Nearest_Neighbor_Error_Rates 19]
 +
[http://balthier.ecn.purdue.edu/index.php/Lecture_20_-_Density_Estimation_using_Series_Expansion_and_Decision_Trees 20]

Revision as of 15:14, 28 March 2008

ECE662 Main Page

Class Lecture Notes

Lecture Objective

  • Maximum Likelihood Estimation and Bayesian Parameter Estimation
  • Linear Discriminant Functions

Maximum Likelihood Estimation and Bayesian Parameter Estimation

MLEvBPE comparison OldKiwi.jpg

If the prior distributions have some specific properties than the Bayesian Parameter Estimation and Maximum Likelihood Estimation are asymptotically equivalent for infinite training data. However, large training datasets are typically unavailable in pattern recognition problems. Furthermore, when the dimension of data increases, the complexity of estimating the parameters increases exponentially. In that aspect, BPE and MLE have some advantages over each other.

  • Computational Complexity:

MLE has a better performance than BPE for large data, because MLE simply uses gradient or differential calculus to estimate the parameters. On the other hand, BPE uses high dimensional integration and it's computationally expensive.

  • Interpretability:

The results of MLE are easier to interpret because it generates a single model to fit the data as much as possible. However, BPE generates a weighted sum of models which is harder to understand.

  • Form of Distribution:

The advantage of using BPE is that it uses prior information that we have about the model and it gives us a possibility to sequentially update the model. If the information we have on the model is reliable than BPE is better than MLE. On the other hand, if prior model is uniformly distributed than BPE is not so different than MLE. Indeed, MLE is a special and simplistic form of BPE.

Figure for BPE processes: BPEprocess OldKiwi.jpg

See also: Comparison of MLE and Bayesian Parameter Estimation_OldKiwi

Linear Discriminant Functions

(From DHS Chapter 5)

Lec8LDF OldKiwi.jpg

Suppose we have $ p(w_1|\vec{x}) $ and $ p(w_2|\vec{x}) $

$ g(\vec{x}) = p(w_1|\vec{x}) - p(w_2|\vec{x}) $

$ p(\vec{x}|w_i) $ -> Parametric Estimation Method

$ g(\vec{x}) $ -> proper form of Linear Discriminant Function

$ [1,x,x^2,x^3] $ -> new feature space

Simple and easy to design:

  • 1 category case:

Lec8 1 OldKiwi.jpg

$ g(\vec{x}) = w\vec{x} + w_0 $

where $ w $ is the weight factor and $ w_0 $ is the bias of the threshold

  • 2 category case:

$ w_1, g(\vec{x}) > 0 $

$ w_2, g(\vec{x}) < 0 $

$ g(\vec{x}) = 0 $ : decision surface

Lec8 2 OldKiwi.jpg

$ g(\vec{x_1}) = w'\vec{x_1} + w_0 $

$ g(\vec{x_2}) = w'\vec{x_2} + w_0 $

$ w'\vec{x_1} + w_0 = w'\vec{x_2} + w_0 $

$ w'(\vec{x_1} - \vec{x_2}) = 0 $

  • N category case:

Lec8 3 OldKiwi.jpg

$ \vec{x} = \vec{x_p} + r\frac{\vec{w}}{|\vec{w}|} $

where $ \vec{x_p} $ is the projection point, $ r $ is the distance, and $ \frac{\vec{w}}{|\vec{w}|} $ is the unit normal

$ g(\vec{x}) = w'(\vec{x_p} + r\frac{\vec{w}}{|\vec{w}|}) + w_0 = w'\vec{x_p} + w_0 + w'r\frac{\vec{w}}{|\vec{w}|} = r|\vec{w}| $

therefore $ r = \frac{g(\vec{x})}{|\vec{w}|} $

For more information:

Parametric Estimators_OldKiwi

Lectures

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett