(PDE based valley seeking)
Line 56: Line 56:
  
 
sometimes written as <math>E'=0 \Rightarrow \frac{\partial E}{\partial u}=0</math> (3-4)
 
sometimes written as <math>E'=0 \Rightarrow \frac{\partial E}{\partial u}=0</math> (3-4)
 +
 +
  
 
Similarly if <math>E=\int _0 ^1 F(u,u',u'')dx</math> (3-5)
 
Similarly if <math>E=\int _0 ^1 F(u,u',u'')dx</math> (3-5)
Line 81: Line 83:
 
1D curve <math>u(x)</math> with <math>u(0)=a, u(1)=b</math> (3-12)
 
1D curve <math>u(x)</math> with <math>u(0)=a, u(1)=b</math> (3-12)
  
<math>E(u)=\int _{0} ^{1} ||\nabla u||^2 dx</math> (3-13)
+
<math>E(u)=\int _{0} ^{1} ||\nabla u||^2 dx</math> (3-13) Dirichlet integral
 +
 
 +
<math>F=||\nabla u||^2=u_x ^2</math>
 +
 
 +
Euler equation E'=0
 +
 
 +
<math>\frac{\partial F}{\partial u} - \frac{d}{dx}(\frac{\partial F}{\partial u_x})=0 </math> (3-14)
 +
 
 +
<math>0-\frac{d}{dx}(2u_x)=0 \Rightarrow -2u_{xx}=0 \Rightarrow u_{xx}=0</math>  (3-15)
 +
 
 +
with boundary condition, <math>u(0)=0, u(1)=b</math>
 +
 
 +
Solution: <math>u(x)=c_1 x+ c_2</math>
 +
 
 +
<math>u(0)=a \Rightarrow c_2=a</math> (3-16)
 +
 
 +
<math>u(1)=b \Rightarrow c_1 + c_2 = b \Rightarrow c_1=b-a</math> (3-17)
 +
 
 +
<<Picture>>
 +
 
 +
In general, cannot solve Euler equation analytically
 +
In practice, use 'Gradient descent'

Revision as of 11:09, 22 April 2008

Clustering by finding valleys of densities

-- Approach 1: "Bump Hunting" --

   - Approximate p(x)
   - Find peaks of density
   - Expand cluster boundaries outward until they meet (hopefully in middle!)
   - Define meeting points = Cluster boundary points

-- Approach 2: "Valley Seeking" --

   - Start from valley regions of p(x)
   - Work uphill to connect data points to density peaks

Graph based implementation

   - Estimate p(x)
   - For all patterns $ X_i $, denote by $ N_r(X_i) $, the neighborhood of size $ r $ of $ X_i $.
   - Estimate derivative of density p(x) along direction $ X_i-X_j, \forall X_j\in N_r(X_i) $
           $ S_i(j)=\frac{p(X_i)-p(X_j)}{||X_i-X_j||_{L_2}} $
           Let $ j_{max}=argmax_j S_i(j) $
           If $ S_i(j_{max})<0 $ declare $ i $ to be a root node.
           If $ S_i(j_{max})>0 $ declare $ X_{j_{max}} $ to be parent of $ X_i $.
           If $ S_i(j_{max})=0 $ it depends on the surroundings what link we establish.
   - If $ X_i $ is connected to a root node, then make this root node a parent of $ X_i $, else make $ X_i $ a root node.
   - Repeat

When all points are visited, a forest is constructed. Each connected component (=tree of a forest) is a cluster.

  • Problem: All methods presented above encounter a serious problem because of the following reasons:
   - Density may oscillate a lot
   - Valleys are not well defined.
  • Someone please insert figure here illustrating the above mentioned problem, as drawn in class.

PDE based valley seeking

PDE: Partial Differential Equation

PDE's can be used to minimize energy functionals

  • Simple Example

Consider 1-D curves

$ u(x): [0,1] \rightarrow \Re $ with fixed end points $ u(0)=a $, $ u(1)=b $ (3-1)

<<Picture>>

Suppose Energy of curve is $ E(u)=\int _0 ^1 F(u, u')dx $ for some function $ F: \Re ^2 \rightarrow \Re $

e.g.) $ F(u,u')=|u'|^2 $ (3-2)

The curve that minimizes (or maximizes) E(u) satisfies Euler Equation

$ \frac{\partial F} {\partial u} -\frac{d}{dx}(\frac{\partial F}{\partial u'})=0 $ (3-3)

sometimes written as $ E'=0 \Rightarrow \frac{\partial E}{\partial u}=0 $ (3-4)


Similarly if $ E=\int _0 ^1 F(u,u',u'')dx $ (3-5)

e.g.) $ F(u,u',u'')=|u''|^2 $ (3-6)

Then Euler equation is $ \frac{\partial F}{\partial u} - \frac{d}{dx}(\frac{\partial F}{\partial u'}) + \frac{d^2}{dx^2}(\frac{\partial F}{\partial u''})=0 $ (3-7)

Similarly, for surface in $ \Re ^2 $

$ u(x,y): [0,1] \times [0,1] \rightarrow \Re $ (3-8)

Suppose energy is given by

$ E(u)=\int _{surface} F(u,u_x, u_y, u_{xx}, u_{xy},u_{yy})dxdy $ (3-9)

e.g.) $ F={u_x}^2+{u_y}^2 $ (3-10)

Then Euler equation is

$ \frac{\partial F}{\partial u} - \frac{d}{dx}(\frac{\partial F}{\partial u_x}) - \frac{d}{dy}(\frac{\partial F}{\partial u_y}) + \frac{d^2}{dx^2}(\frac{\partial F}{\partial u_{xx}}) + \frac{d^2}{dy^2}(\frac{\partial F}{\partial u_{yy}}) + \frac{d^2}{dxdy}(\frac{\partial F}{\partial u_{xy}})=0 $ (3-11)

  • Illustration

1D curve $ u(x) $ with $ u(0)=a, u(1)=b $ (3-12)

$ E(u)=\int _{0} ^{1} ||\nabla u||^2 dx $ (3-13) Dirichlet integral

$ F=||\nabla u||^2=u_x ^2 $

Euler equation E'=0

$ \frac{\partial F}{\partial u} - \frac{d}{dx}(\frac{\partial F}{\partial u_x})=0 $ (3-14)

$ 0-\frac{d}{dx}(2u_x)=0 \Rightarrow -2u_{xx}=0 \Rightarrow u_{xx}=0 $ (3-15)

with boundary condition, $ u(0)=0, u(1)=b $

Solution: $ u(x)=c_1 x+ c_2 $

$ u(0)=a \Rightarrow c_2=a $ (3-16)

$ u(1)=b \Rightarrow c_1 + c_2 = b \Rightarrow c_1=b-a $ (3-17)

<<Picture>>

In general, cannot solve Euler equation analytically In practice, use 'Gradient descent'

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn