(PDE based valley seeking)
(PDE based valley seeking)
Line 12: Line 12:
  
 
* Simple Example
 
* Simple Example
 +
 +
Consider 1-D curves
 +
 +
<math>u(x): [0,1] \rightarrow \Re</math> with fixed end points u(0)=a, u(1)=b  (3-1)
 +
 +
<<Picture>>
 +
 +
Suppose Energy of curve is
 +
<math>E(u)=\int _0 ^1 F(u, u')dx</math> for some function <math>F: \Re ^2 \rightarrow \Re</math>
 +
 +
e.g.) <math>F(u,u')=|u'|^2</math> (3-2)
 +
 +
The curve that minimizes (or maximizes) E(u) satisfies Euler Equation
 +
 +
<math>\frac{\partial F} {\partial u} -\frac{d}{dx}(\frac{\partial F}{\partial u'})=0</math> (3-3)
 +
 +
sometimes written as <math>E'=0 \Rightarrow \frac{\partial E}{\partial u}=0</math> (3-4)
 +
 +
Similarly if <math>E=\int _0 ^1 F(u,u',u'')dx</math> (3-5)
 +
 +
e.g.) <math>F(u,u',u'')=|u''|^2</math> (3-6)
 +
 +
Then Euler equation is <math>\frac{\partial F}{\partial u} - \frac{d}{dx}(\frac{\partial F}{\partial u'}) + \frac{d}{dx^2}(\frac{\partial F}{\partial u''})=0</math> (3-7)
 +
 +
Similarly, for surface in <math>\Re ^2</math>
 +
 +
<math>u(x,y): [0,1] \times [0,1] \rightarrow \Re</math> (3-8)
 +
 +
Suppose energy is given by
 +
 +
<math>E(u)=\int _{surface} F(u,u_x, u_y, u_{xx}, u_{xy},u_{yy})dxdy</math> (3-9)
 +
 +
e.g.) <math>F={u_x}^2+{u_y}^2</math> (3-10)
 +
 +
Then Euler equation is

Revision as of 10:44, 22 April 2008

Clustering by finding valleys of densities

Graph based implementation

PDE based valley seeking

PDE: Partial Differential Equation

PDE's can be used to minimize energy functionals

  • Simple Example

Consider 1-D curves

$ u(x): [0,1] \rightarrow \Re $ with fixed end points u(0)=a, u(1)=b (3-1)

<<Picture>>

Suppose Energy of curve is $ E(u)=\int _0 ^1 F(u, u')dx $ for some function $ F: \Re ^2 \rightarrow \Re $

e.g.) $ F(u,u')=|u'|^2 $ (3-2)

The curve that minimizes (or maximizes) E(u) satisfies Euler Equation

$ \frac{\partial F} {\partial u} -\frac{d}{dx}(\frac{\partial F}{\partial u'})=0 $ (3-3)

sometimes written as $ E'=0 \Rightarrow \frac{\partial E}{\partial u}=0 $ (3-4)

Similarly if $ E=\int _0 ^1 F(u,u',u'')dx $ (3-5)

e.g.) $ F(u,u',u'')=|u''|^2 $ (3-6)

Then Euler equation is $ \frac{\partial F}{\partial u} - \frac{d}{dx}(\frac{\partial F}{\partial u'}) + \frac{d}{dx^2}(\frac{\partial F}{\partial u''})=0 $ (3-7)

Similarly, for surface in $ \Re ^2 $

$ u(x,y): [0,1] \times [0,1] \rightarrow \Re $ (3-8)

Suppose energy is given by

$ E(u)=\int _{surface} F(u,u_x, u_y, u_{xx}, u_{xy},u_{yy})dxdy $ (3-9)

e.g.) $ F={u_x}^2+{u_y}^2 $ (3-10)

Then Euler equation is

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman