(Algorithms for clustering from feature vector)
(Algorithms for clustering from feature vector)
Line 27: Line 27:
 
<math>S_w= \sum _{i=1, X_i \in S_1} ^d ||X_i - \mu _1||^2 + \sum _{i=1, X_i \in S_2} ^d ||X_i - \mu _2||^2</math>  (2-1)
 
<math>S_w= \sum _{i=1, X_i \in S_1} ^d ||X_i - \mu _1||^2 + \sum _{i=1, X_i \in S_2} ^d ||X_i - \mu _2||^2</math>  (2-1)
  
<math>\mu _1 = \frac{1}{|S_1|} \sun _{X_i \in S_1} X_i</math>, <math>\mu _2 = \frac{1}{|S_2|} \sun _{X_i \in S_2} X_i</math> (2-2)
+
<math>\mu _1 = \frac{1}{|S_1|} \sun _{X_i \in S_1} X_i</math>, <math>\mu _2 = \frac{1}{|S_2|} \sum _{X_i \in S_2} X_i</math> (2-2)
  
 
<math>S_m</math> is "mixture scatter matrix"
 
<math>S_m</math> is "mixture scatter matrix"
Line 64: Line 64:
 
Compute J
 
Compute J
  
Consider effect of moving <math>X_1</math> into <math>S_2 \Rightarrow \Delta J_{12}</math>,  <math>X_2</math> into <math>S_2 \Rightarrow \Delta J_{22}</math>, <math>X_3</math> into <math>S_3 \Rightarrow \Delta J_{33}</math>, <math>X_4</math> into <math>S_1 \Rightarrow \Delta J_{41}</math>, <math>X_5</math> into <math>S_1 \Rightarrow \Delta J_{51}</math>, <math>X_6</math> into <math>S_1 \Rightarrow \Delta J_{61}</math>
+
Consider effect of moving  
 +
 
 +
<math>X_1</math> into <math>S_2 \Rightarrow \Delta J_{12}</math>,   
 +
 
 +
<math>X_2</math> into <math>S_2 \Rightarrow \Delta J_{22}</math>,  
 +
 
 +
<math>X_3</math> into <math>S_3 \Rightarrow \Delta J_{33}</math>,  
 +
 
 +
<math>X_4</math> into <math>S_1 \Rightarrow \Delta J_{41}</math>,  
 +
 
 +
<math>X_5</math> into <math>S_1 \Rightarrow \Delta J_{51}</math>,  
 +
 
 +
<math>X_6</math> into <math>S_1 \Rightarrow \Delta J_{61}</math>
  
 
Apply (Simultaneously) all the moves for which <math>\Delta J</math> is negative, repeat procedure
 
Apply (Simultaneously) all the moves for which <math>\Delta J</math> is negative, repeat procedure

Revision as of 07:12, 16 April 2008

Clustering Methods

Algorithms for clustering from feature vector

Called "Partitional clustering" in Jain and Dude as opposed to "hierarchical clustering"

Clustering feature vectors = finding separation between clusters but these are not known

<<Picture>>

We have a set of points S Want to find subsets $ S_1 , S_2 , \cdots , S_c $ such that $ S=S_1 \cup S_2 \cup \cdots \cup S_c $ and $ S_i \cap S_j = \phi $

need to define "clustering criteria" i.e., a measure of how natural the clustering is.

if c=2,

consider

$ J=tr(S_m ^{-1} S_w) $

where $ S_w $ is "within class scatter matrix"

$ S_w= \sum _{i=1, X_i \in S_1} ^d ||X_i - \mu _1||^2 + \sum _{i=1, X_i \in S_2} ^d ||X_i - \mu _2||^2 $ (2-1)

$ \mu _1 = \frac{1}{|S_1|} \sun _{X_i \in S_1} X_i $, $ \mu _2 = \frac{1}{|S_2|} \sum _{X_i \in S_2} X_i $ (2-2)

$ S_m $ is "mixture scatter matrix"

$ S_m= \sum _{i=1} ^d ||X_i - \mu||^2 $, $ \mu = \frac{1}{d} \sum _{i=1} ^{d} X_i $ (2-3)

Try to find $ S_1 $ and $ S_2 $ that minimize J.

Exhaustive search procedure

Examnple with 6 pattern $ X_1 , X_2 , \cdots , X_6 $

List all partition of 6 points into 2 sets.

<<Someting>>


Evaluate J for each partition

Cansider other J's

$ J=ln|S_m ^{-1} S_w| $ (2-4)

$ J=tr (S_m) - \mu (tr S_w -c) $ (2-5)

C is fixed constant, $ \mu $ : Largrange multiplier

$ J=\frac{tr(S_m)}{tr(S_w)} $ (2-6)

To speed up search "use iterative procedure"

Pick a partition at random

$ S_1={X_1, X_2, X_3}, S_2= {X_4, X_5, X_6} $ (2-7)

Compute J

Consider effect of moving

$ X_1 $ into $ S_2 \Rightarrow \Delta J_{12} $,

$ X_2 $ into $ S_2 \Rightarrow \Delta J_{22} $,

$ X_3 $ into $ S_3 \Rightarrow \Delta J_{33} $,

$ X_4 $ into $ S_1 \Rightarrow \Delta J_{41} $,

$ X_5 $ into $ S_1 \Rightarrow \Delta J_{51} $,

$ X_6 $ into $ S_1 \Rightarrow \Delta J_{61} $

Apply (Simultaneously) all the moves for which $ \Delta J $ is negative, repeat procedure

OR

Apply the move for which $ \Delta J $ is the most negative repeat procedure

Convergence?

If convergence, global minimum? No idea

If c>2, can use similar procedure

If c is unknown, try c=2,3,4, etc (hierarchical clustering)

Look at evolution of J for c increase (similarity scale)

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett