Line 3: Line 3:
 
[http://balthier.ecn.purdue.edu/index.php/ECE662#Class_Lecture_Notes Class Lecture Notes]
 
[http://balthier.ecn.purdue.edu/index.php/ECE662#Class_Lecture_Notes Class Lecture Notes]
  
**Nearest Neighbor Classification Rule**
+
'''Nearest Neighbor Classification Rule'''
- useful when there are several labels
+
* useful when there are several labels
- e.g. fingerprint-based recognition
+
* e.g. fingerprint-based recognition
  
.. |X_space_d| image:: tex
+
''Problem'': Given the labeled training samples: <math>\vec{X_1}, \vec{X_2}, \ldots, \vec{X_d}</math> <math>\in \mathbb{R}^n</math> (or some other feature space) and an unlabeled test point <math>\vec{X_0}</math> <math>\in \mathbb{R}^n</math>.
:alt: tex: \vec{X_1}, \vec{X_2}, \ldots, \vec{X_d}
+
  
.. |inRn| image:: tex
+
''Classification'': Let <math>\vec{X_i}</math> be the closest training point to <math>\vec{X_0}</math>, then we assign the class of <math>\vec{X_i}</math> to <math>\vec{X_0}</math>.
:alt: tex: \in \mathbb{R}^n
+
  
.. |X_0| image:: tex
 
:alt: tex: \vec{X_0}
 
  
 
+
'''What do we mean by closest?'''
.. |X| image:: tex
+
:alt: tex: \vec{X}
+
 
+
Problem: Given the labeled training samples: |X_space_d| |inRn| (or some other feature space) and an unlabeled test point |X_0| |inRn|.
+
 
+
Classification: Let |X| be the closest training point to |X_0|, then we assign the class of |X| to |X_0|.
+
 
+
**What do we mean by closest?**
+
 
+
.. |D_from_SxS_to_R| image:: tex
+
:alt: tex: D: S\times S\rightarrow \mathbb{R}
+
  
 
There are many meaning depending on the metric we choose for the feature space.
 
There are many meaning depending on the metric we choose for the feature space.
  
**Definition** A "metric" on a space S is a function
 
  
|D_from_SxS_to_R|
+
'''Definition''' A "metric" on a space S is a function
  
.. |nonnegat| image:: tex
+
<math>D: S\times S\rightarrow \mathbb{R}</math>
:alt: tex: D(\vec{x_1},\vec{x_2})\geq 0, \forall \vec{x_1},\vec{x_2}\in S
+
 
+
 
+
.. |symmetry| image:: tex
+
:alt: tex: D(\vec{x_1},\vec{x_2})=D(\vec{x_2},\vec{x_1}), \forall \vec{x_1},\vec{x_2}\in S
+
 
+
 
+
.. |reflex| image:: tex
+
:alt: tex: D(\vec{x},\vec{x})=0, \forall \vec{x}\in S
+
 
+
 
+
.. |tri-ineq| image:: tex
+
:alt: tex: D(\vec{x_1},\vec{x_2})+D(\vec{x_2},\vec{x_3})\geq D(\vec{x_1},\vec{x_3}) , \forall \vec{x_1}, \vec{x_2}, \vec{x_3}\in S
+
  
 
that satisfies the following 4 properties:
 
that satisfies the following 4 properties:
- Non-negativity |nonnegat|
+
* Non-negativity <math>D(\vec{x_1},\vec{x_2})\geq 0, \forall \vec{x_1},\vec{x_2}\in S</math>
- Symmetry |symmetry|
+
* Symmetry <math>D(\vec{x_1},\vec{x_2})=D(\vec{x_2},\vec{x_1}), \forall \vec{x_1},\vec{x_2}\in S</math>
- Reflexivity |reflex|
+
* Reflexivity <math>D(\vec{x},\vec{x})=0, \forall \vec{x}\in S</math>
- Triangle Inequality |tri-ineq|
+
* Triangle Inequality <math>D(\vec{x_1},\vec{x_2})+D(\vec{x_2},\vec{x_3})\geq D(\vec{x_1},\vec{x_3}) , \forall \vec{x_1}, \vec{x_2}, \vec{x_3}\in S</math>
 
+
.. |euclid| image:: tex
+
:alt: tex: D(\vec{x_1},\vec{x_2})=||\vec{x_1}-\vec{x_2}||_{L_2}=\sqrt{\sum_{i=1}^n ({x_1}^i-{x_2}^i)^2}
+
 
+
.. |manhattan| image:: tex
+
:alt: tex: D(\vec{x_1},\vec{x_2})=||\vec{x_1}-\vec{x_2}||_{L_1}=\sum_{i=1}^n |{x_1}^i-{x_2}^i|
+
 
+
.. |minkowski| image:: tex
+
:alt: tex: D(\vec{x_1},\vec{x_2})=||\vec{x_1}-\vec{x_2}||_{L_p}=(\sum_{i=1}^n ({x_1}^i-{x_2}^i)^p)^{\frac{1}{p}}
+
 
+
.. |riemannian| image:: tex
+
:alt: tex: D(\vec{x_1},\vec{x_2})=\sqrt{(\vec{x_1}-\vec{x_2})^\top \mathbb{M}(\vec{x_1}-\vec{x_2})}
+
 
+
**Examples of metrics**
+
 
+
Euclidean distance: |euclid|
+
 
+
Manhattan distance: |manhattan|
+
  
Minkowski metric: |minkowski|
 
  
Riemannian metric: |riemannian|
+
'''Examples of metrics'''
  
.. |nxn| image:: tex
+
Euclidean distance: <math>D(\vec{x_1},\vec{x_2})=||\vec{x_1}-\vec{x_2}||_{L_2}=\sqrt{\sum_{i=1}^n ({x_1}^i-{x_2}^i)^2}</math>
:alt: tex: n\times n
+
where M is a symmetric positive definite |nxn| matrix. Different choices for M enable associating different weights with different components.
+
  
.. |Rn| image:: tex
+
Manhattan distance: <math>D(\vec{x_1},\vec{x_2})=||\vec{x_1}-\vec{x_2}||_{L_1}=\sum_{i=1}^n |{x_1}^i-{x_2}^i|</math>
:alt: tex: \mathbb{R}^n
+
  
.. |Zn| image:: tex
+
Minkowski metric: <math>D(\vec{x_1},\vec{x_2})=||\vec{x_1}-\vec{x_2}||_{L_p}=(\sum_{i=1}^n ({x_1}^i-{x_2}^i)^p)^{\frac{1}{p}}</math>
:alt: tex: \mathbb{Z}^n
+
  
.. |Cn| image:: tex
+
Riemannian metric: <math>D(\vec{x_1},\vec{x_2})=\sqrt{(\vec{x_1}-\vec{x_2})^\top \mathbb{M}(\vec{x_1}-\vec{x_2})}</math>
:alt: tex: \mathbb{C}^n
+
  
In this way, we see that |Rn|, |Zn|, |Cn| have many natural metrics, but feature could be in some other set, e.g. a discrete set.
+
where M is a symmetric positive definite <math>n\times n</math> matrix. Different choices for M enable associating different weights with different components.
  
test
+
In this way, we see that <math> \mathbb{R}^n</math>, <math>\mathbb{Z}^n</math>, <math>\mathbb{C}^n</math> have many natural metrics, but feature could be in some other set, e.g. a discrete set.

Revision as of 14:55, 10 March 2008

ECE662 Main Page

Class Lecture Notes

Nearest Neighbor Classification Rule

  • useful when there are several labels
  • e.g. fingerprint-based recognition

Problem: Given the labeled training samples: $ \vec{X_1}, \vec{X_2}, \ldots, \vec{X_d} $ $ \in \mathbb{R}^n $ (or some other feature space) and an unlabeled test point $ \vec{X_0} $ $ \in \mathbb{R}^n $.

Classification: Let $ \vec{X_i} $ be the closest training point to $ \vec{X_0} $, then we assign the class of $ \vec{X_i} $ to $ \vec{X_0} $.


What do we mean by closest?

There are many meaning depending on the metric we choose for the feature space.


Definition A "metric" on a space S is a function

$ D: S\times S\rightarrow \mathbb{R} $

that satisfies the following 4 properties:

  • Non-negativity $ D(\vec{x_1},\vec{x_2})\geq 0, \forall \vec{x_1},\vec{x_2}\in S $
  • Symmetry $ D(\vec{x_1},\vec{x_2})=D(\vec{x_2},\vec{x_1}), \forall \vec{x_1},\vec{x_2}\in S $
  • Reflexivity $ D(\vec{x},\vec{x})=0, \forall \vec{x}\in S $
  • Triangle Inequality $ D(\vec{x_1},\vec{x_2})+D(\vec{x_2},\vec{x_3})\geq D(\vec{x_1},\vec{x_3}) , \forall \vec{x_1}, \vec{x_2}, \vec{x_3}\in S $


Examples of metrics

Euclidean distance: $ D(\vec{x_1},\vec{x_2})=||\vec{x_1}-\vec{x_2}||_{L_2}=\sqrt{\sum_{i=1}^n ({x_1}^i-{x_2}^i)^2} $

Manhattan distance: $ D(\vec{x_1},\vec{x_2})=||\vec{x_1}-\vec{x_2}||_{L_1}=\sum_{i=1}^n |{x_1}^i-{x_2}^i| $

Minkowski metric: $ D(\vec{x_1},\vec{x_2})=||\vec{x_1}-\vec{x_2}||_{L_p}=(\sum_{i=1}^n ({x_1}^i-{x_2}^i)^p)^{\frac{1}{p}} $

Riemannian metric: $ D(\vec{x_1},\vec{x_2})=\sqrt{(\vec{x_1}-\vec{x_2})^\top \mathbb{M}(\vec{x_1}-\vec{x_2})} $

where M is a symmetric positive definite $ n\times n $ matrix. Different choices for M enable associating different weights with different components.

In this way, we see that $ \mathbb{R}^n $, $ \mathbb{Z}^n $, $ \mathbb{C}^n $ have many natural metrics, but feature could be in some other set, e.g. a discrete set.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood