Line 26: Line 26:
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
 
| <math> f\left( \frac{s}{a} \right) </math>
 
| <math> f\left( \frac{s}{a} \right) </math>
| <math> aF(at)</math>
+
| <math> aF(at) \ </math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| <math> f(s-a)</math>
+
| <math> f(s-a) \</math>
|<math> e^{at}F(t) </math>
+
|<math> e^{at}F(t) \</math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| <math> e^{-as}f(s)</math>
+
| <math> e^{-as}f(s) \</math>
 
| <math> u(t-a) =  
 
| <math> u(t-a) =  
 
\begin{cases}  
 
\begin{cases}  
Line 41: Line 41:
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| <math> sf(s)-F(0) </math>
+
| <math> sf(s)-F(0) \</math>
| <math> F'(t)</math>
+
| <math> F'(t) \ </math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| <math> s^2f(s)-sF(0)-F'(0) </math>
+
| <math> s^2f(s)-sF(0)-F'(0) \</math>
| <math> F''(t)</math>
+
| <math> F''(t)\</math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| <math> s^{n}f(s)-\sum_{k=1}^ns^{n-k}F^{(k)}(0)</math>
+
| <math> s^{n}f(s)-\sum_{k=1}^ns^{n-k}F^{(k)}(0)\</math>
| <math> F^{(n)}(t)</math>
+
| <math> F^{(n)}(t)\</math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |
 
| align="right" style="padding-right: 1em;" |
| <math> f'(s)</math>
+
| <math> f'(s)\</math>
| <math> -tF(t)</math>
+
| <math> -tF(t)\</math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| <math>f''(s) </math>
+
| <math>f''(s)\ </math>
| <math> t^2F(t) </math>
+
| <math> t^2F(t)\ </math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| <math> f^{(n)}(s)</math>
+
| <math> f^{(n)}(s)\</math>
| <math> (-1)^{(ntn)}F(t)</math>
+
| <math> (-1)^{(ntn)}F(t)\</math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| <math> \frac{f(s)}s</math>
+
| <math> \frac{f(s)}s\</math>
| <math> \int_{0}^{t} F(u) du </math>
+
| <math> \int_{0}^{t} F(u) du \</math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| <math> \frac{f(s)}{s^n} </math>
+
| <math> \frac{f(s)}{s^n} \</math>
| <math> \int_{0}^{t}...\int_{0}^{t}F(u)du^n = \int_{0}^{t}\frac{{(t-u)}^{n-1}}{(n-1)!} F(u)du</math>
+
| <math> \int_{0}^{t}...\int_{0}^{t}F(u)du^n = \int_{0}^{t}\frac{{(t-u)}^{n-1}}{(n-1)!} F(u)du\</math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| <math>f(s)g(s)</math>
+
| <math>f(s)g(s)\</math>
| <math> \int_{0}^{t}F(u)G(t-u)du </math>
+
| <math> \int_{0}^{t}F(u)G(t-u)du\ </math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| <math> \int_{s}^{\infty}f(u)du </math>
+
| <math> \int_{s}^{\infty}f(u)du \</math>
| <math> \frac{F(t)}t</math>
+
| <math> \frac{F(t)}t \</math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| <math> \frac1{1-e^{-sT}}\int_{0}^{T}e^{-su}F(u)du </math>
+
| <math> \frac1{1-e^{-sT}}\int_{0}^{T}e^{-su}F(u)du \</math>
| <math> F(t)=F(t+T)</math>
+
| <math> F(t)=F(t+T)\</math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| <math> \frac{f(\sqrt{s})}s</math>
+
| <math> \frac{f(\sqrt{s})}s\</math>
 
| <math> \frac{1}{\sqrt{{\pi}t}}\int_{0}^{\infty}e^{-\frac{u^2}4t}F(u)du </math>
 
| <math> \frac{1}{\sqrt{{\pi}t}}\int_{0}^{\infty}e^{-\frac{u^2}4t}F(u)du </math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |
 
| align="right" style="padding-right: 1em;" |
| <math> \frac1sf(\frac1s)</math>
+
| <math> \frac1sf\left(\frac1s\right)\</math>
| <math> \int_{0}^{\infty}J_0(2\sqrt{ut})F(u)du</math>
+
| <math> \int_{0}^{\infty}J_0(2\sqrt{ut})F(u)du\</math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| <math> \frac1{g^{n+1}}f(\frac1s)</math>
+
| <math> \frac1{g^{n+1}}f\left(\frac1s\right)\</math>
| <math> t^{\frac{n}2}\int_{0}^{\infty}u^{-\frac{n}2}J_n(2\sqrt{ut})F(u)du </math>
+
| <math> t^{\frac{n}2}\int_{0}^{\infty}u^{-\frac{n}2}J_n(2\sqrt{ut})F(u)du \</math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| <math> \frac{f(s+\frac1s)}{s^2+1}</math>
+
| <math> \frac{f(s+\frac1s)}{s^2+1}\</math>
| <math> \int_{0}^{t}J_0(2\sqrt{u(t-u)})F(u)du</math>
+
| <math> \int_{0}^{t}J_0(2\sqrt{u(t-u)})F(u)du\</math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| <math> \frac1{2\sqrt\pi}\int_{0}^{\infty}u^{-\frac32}e^{-\frac{s^2}{4u}}f(u)du</math>
+
| <math> \frac1{2\sqrt\pi}\int_{0}^{\infty}u^{-\frac32}e^{-\frac{s^2}{4u}}f(u)du\</math>
| <math> F(t^2)</math>
+
| <math> F(t^2)\</math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| <math> \frac{f(\ln s)}{s\ln s}</math>
+
| <math> \frac{f(\ln s)}{s\ln s}\</math>
| <math> \int_{0}^{\infty}\frac{t^uF(u)}{\Gamma(u+1)}du</math>
+
| <math> \int_{0}^{\infty}\frac{t^uF(u)}{\Gamma(u+1)}du\</math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |
 
| align="right" style="padding-right: 1em;" |
| <math> \frac{P(s)}{Q(s)}</math>
+
| <math> \frac{P(s)}{Q(s)}\</math>
| <math> \sum{k=1}^N \frac{P(\alpha_k)}{Q'(\alpha_k)}e^{\alpha_kt}</math>
+
| <math> \sum_{k=1}^N \frac{P(\alpha_k)}{Q'(\alpha_k)}e^{\alpha_kt}\</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" |
 +
| <math> \frac1s\</math>
 +
| <math> 1\</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" |
 +
| <math> \frac1{s^2}\</math>
 +
| <math> t(s)\</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" |
 +
| <math> \frac1{s^n}  n=1,2,3,...\</math>
 +
| <math> \frac{t^{n-1}}{(n-1)!},  0!=1\</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | please continue
 +
| place formula here
 +
|-<math> af_1(s)+bf_2(s)</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | please continue
 +
| place formula here
 +
|-<math> af_1(s)+bf_2(s)</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | please continue
 +
| place formula here
 +
|-<math> af_1(s)+bf_2(s)</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | please continue
 +
| place formula here
 +
|-<math> af_1(s)+bf_2(s)</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | please continue
 +
| place formula here
 +
|-<math> af_1(s)+bf_2(s)</math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | please continue
 
| align="right" style="padding-right: 1em;" | please continue
Line 120: Line 152:
 
|-<math> af_1(s)+bf_2(s)</math>
 
|-<math> af_1(s)+bf_2(s)</math>
 
|-
 
|-
 +
 
|}
 
|}
 
{|
 
{|

Revision as of 16:56, 8 November 2010

IT SEEMS LIKE THE VARIABLES s AND t WERE INTERCHANGED BELOW.

Laplace Transform Pairs and Properties
Definition
Laplace Transform $ F(s)=\int_{-\infty}^\infty f(t) e^{-st}dt, \ s\in {\mathbb C} \ $
Inverse Laplace Transform add formula here
Properties of the Laplace Transform
function $ f(s) \ $ Laplace transform $ F(t) \ $ ROC $ R $
$ af_1(s)+bf_2(s) \ $ $ aF_1(t)+bF_2(t) \ $
$ f\left( \frac{s}{a} \right) $ $ aF(at) \ $
$ f(s-a) \ $ $ e^{at}F(t) \ $
$ e^{-as}f(s) \ $ $ u(t-a) = \begin{cases} F(t-a) & t>a \\ 0 & t<a \end{cases} $
$ sf(s)-F(0) \ $ $ F'(t) \ $
$ s^2f(s)-sF(0)-F'(0) \ $ $ F''(t)\ $
$ s^{n}f(s)-\sum_{k=1}^ns^{n-k}F^{(k)}(0)\ $ $ F^{(n)}(t)\ $
$ f'(s)\ $ $ -tF(t)\ $
$ f''(s)\ $ $ t^2F(t)\ $
$ f^{(n)}(s)\ $ $ (-1)^{(ntn)}F(t)\ $
$ \frac{f(s)}s\ $ $ \int_{0}^{t} F(u) du \ $
$ \frac{f(s)}{s^n} \ $ $ \int_{0}^{t}...\int_{0}^{t}F(u)du^n = \int_{0}^{t}\frac{{(t-u)}^{n-1}}{(n-1)!} F(u)du\ $
$ f(s)g(s)\ $ $ \int_{0}^{t}F(u)G(t-u)du\ $
$ \int_{s}^{\infty}f(u)du \ $ $ \frac{F(t)}t \ $
$ \frac1{1-e^{-sT}}\int_{0}^{T}e^{-su}F(u)du \ $ $ F(t)=F(t+T)\ $
$ \frac{f(\sqrt{s})}s\ $ $ \frac{1}{\sqrt{{\pi}t}}\int_{0}^{\infty}e^{-\frac{u^2}4t}F(u)du $
$ \frac1sf\left(\frac1s\right)\ $ $ \int_{0}^{\infty}J_0(2\sqrt{ut})F(u)du\ $
$ \frac1{g^{n+1}}f\left(\frac1s\right)\ $ $ t^{\frac{n}2}\int_{0}^{\infty}u^{-\frac{n}2}J_n(2\sqrt{ut})F(u)du \ $
$ \frac{f(s+\frac1s)}{s^2+1}\ $ $ \int_{0}^{t}J_0(2\sqrt{u(t-u)})F(u)du\ $
$ \frac1{2\sqrt\pi}\int_{0}^{\infty}u^{-\frac32}e^{-\frac{s^2}{4u}}f(u)du\ $ $ F(t^2)\ $
$ \frac{f(\ln s)}{s\ln s}\ $ $ \int_{0}^{\infty}\frac{t^uF(u)}{\Gamma(u+1)}du\ $
$ \frac{P(s)}{Q(s)}\ $ $ \sum_{k=1}^N \frac{P(\alpha_k)}{Q'(\alpha_k)}e^{\alpha_kt}\ $
$ \frac1s\ $ $ 1\ $
$ \frac1{s^2}\ $ $ t(s)\ $
$ \frac1{s^n} n=1,2,3,...\ $ $ \frac{t^{n-1}}{(n-1)!}, 0!=1\ $
please continue place formula here
please continue place formula here
please continue place formula here
please continue place formula here
please continue place formula here
please continue place formula here
please continue place formula here
Laplace Transform Pairs
notes Signal Laplace Transform ROC
unit impulse/Dirac delta $ \,\!\delta(t) $ 1 $ \text{All}\, s \in {\mathbb C} $
unit step function $ \,\! u(t) $ $ \frac{1}{s} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ \,\! -u(-t) $ $ \frac{1}{s} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $
$ \frac{t^{n-1}}{(n-1)!}u(t) $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ -\frac{t^{n-1}}{(n-1)!}u(-t) $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $
$ \,\!e^{-\alpha t}u(t) $ $ \frac{1}{s+\alpha} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ \,\! -e^{-\alpha t}u(-t) $ $ \frac{1}{s+\alpha} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $
$ \frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t) $ $ \frac{1}{(s+\alpha )^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ -\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t) $ $ \frac{1}{(s+\alpha )^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $
$ \,\!\delta (t - T) $ $ \,\! e^{-sT} $ $ \text{All}\,\, s\in {\mathbb C} $
$ \,\cos( \omega_0 t)u(t) $ $ \frac{s}{s^2+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ \, \sin( \omega_0 t)u(t) $ $ \frac{\omega_0}{s^2+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ \,e^{-\alpha t}\cos( \omega_0 t) u(t) $ $ \frac{s+\alpha}{(s+\alpha)^{2}+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ \, e^{-\alpha t}\sin( \omega_0 t)u(t) $ $ \frac{\omega_0}{(s+\alpha)^{2}+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ u_n(t) = \frac{d^{n}\delta (t)}{dt^{n}} $ $ \,\!s^{n} $ $ All\,\, s $
$ u_{-n}(t) = \underbrace{u(t) *\dots * u(t)}_{n\,\,times} $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $

Back to Collective Table

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn