Line 95: Line 95:
 
| <math> t^{\frac{n}2}\int_{0}^{\infty}u^{-\frac{n}2}J_n(2\sqrt{ut})F(u)du </math>
 
| <math> t^{\frac{n}2}\int_{0}^{\infty}u^{-\frac{n}2}J_n(2\sqrt{ut})F(u)du </math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | please continue
+
| align="right" style="padding-right: 1em;" |  
| place formula here
+
| <math> \frac{s+\frac1s}{s^2+1}</math>
|-<math> af_1(s)+bf_2(s)</math>
+
| <math> \int_{0}^{t}J_0(2\sqrt{u(t-u)})F(u)du</math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | please continue
 
| align="right" style="padding-right: 1em;" | please continue

Revision as of 18:26, 6 November 2010

IT SEEMS LIKE THE VARIABLES s AND t WERE INTERCHANGED BELOW.

Laplace Transform Pairs and Properties
Definition
Laplace Transform $ F(s)=\int_{-\infty}^\infty f(t) e^{-st}dt, \ s\in {\mathbb C} \ $
Inverse Laplace Transform add formula here
Properties of the Laplace Transform
$ f(s) $ $ F(t) $
$ af_1(s)+bf_2(s) $ $ aF_1(t)+bF_2(t) $
$ f(s/a) $ $ aF(at) $
$ f(s-a) $ $ e^{at}F(t) $
$ e^{-as}f(s) $ $ u(t-a) = \begin{cases} F(t-a) & t>a \\ 0 & t<a \end{cases} $
$ sf(s)-F(0) $ $ F'(t) $
$ s^2f(s)-sF(0)-F'(0) $ $ F''(t) $
$ s^{n}f(s)-\sum_{k=1}^ns^{n-k}F^{(k)}(0) $ $ F^{(n)}(t) $
$ f'(s) $ $ -tF(t) $
$ f''(s) $ $ t^2F(t) $
$ f^{(n)}(s) $ $ (-1)^{(ntn)}F(t) $
$ \frac{f(s)}s $ $ \int_{0}^{t} F(u) du $
$ \frac{f(s)}{s^n} $ $ \int_{0}^{t}...\int_{0}^{t}F(u)du^n = \int_{0}^{t}\frac{{(t-u)}^{n-1}}{(n-1)!} F(u)du $
$ f(s)g(s) $ $ \int_{0}^{t}F(u)G(t-u)du $
$ \int_{s}^{\infty}f(u)du $ $ \frac{F(t)}t $
$ \frac1{1-e^{-sT}}\int_{0}^{T}e^{-su}F(u)du $ $ F(t)=F(t+T) $
$ \frac{f(\sqrt{s})}s $ $ \frac{1}{\sqrt{{\pi}t}}\int_{0}^{\infty}e^{-\frac{u^2}4t}F(u)du $
$ \frac1sf(\frac1s) $ $ \int_{0}^{\infty}J_0(2\sqrt{ut})F(u)du $
$ \frac1{g^{n+1}}f(\frac1s) $ $ t^{\frac{n}2}\int_{0}^{\infty}u^{-\frac{n}2}J_n(2\sqrt{ut})F(u)du $
$ \frac{s+\frac1s}{s^2+1} $ $ \int_{0}^{t}J_0(2\sqrt{u(t-u)})F(u)du $
please continue place formula here
please continue place formula here
please continue place formula here
please continue place formula here
please continue place formula here
Laplace Transform Pairs
notes Signal Laplace Transform ROC
unit impulse/Dirac delta $ \,\!\delta(t) $ 1 $ \text{All}\, s \in {\mathbb C} $
unit step function $ \,\! u(t) $ $ \frac{1}{s} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ \,\! -u(-t) $ $ \frac{1}{s} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $
$ \frac{t^{n-1}}{(n-1)!}u(t) $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ -\frac{t^{n-1}}{(n-1)!}u(-t) $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $
$ \,\!e^{-\alpha t}u(t) $ $ \frac{1}{s+\alpha} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ \,\! -e^{-\alpha t}u(-t) $ $ \frac{1}{s+\alpha} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $
$ \frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t) $ $ \frac{1}{(s+\alpha )^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ -\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t) $ $ \frac{1}{(s+\alpha )^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $
$ \,\!\delta (t - T) $ $ \,\! e^{-sT} $ $ \text{All}\,\, s\in {\mathbb C} $
$ \,\cos( \omega_0 t)u(t) $ $ \frac{s}{s^2+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ \, \sin( \omega_0 t)u(t) $ $ \frac{\omega_0}{s^2+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ \,e^{-\alpha t}\cos( \omega_0 t) u(t) $ $ \frac{s+\alpha}{(s+\alpha)^{2}+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ \, e^{-\alpha t}\sin( \omega_0 t)u(t) $ $ \frac{\omega_0}{(s+\alpha)^{2}+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ u_n(t) = \frac{d^{n}\delta (t)}{dt^{n}} $ $ \,\!s^{n} $ $ All\,\, s $
$ u_{-n}(t) = \underbrace{u(t) *\dots * u(t)}_{n\,\,times} $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $

Back to Collective Table

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang