Line 81: Line 81:
 
<math>\left(\begin{array}{c}5\\0\end{array}\right)NOT=\left(\begin{array}{c}1\\0\end{array}\right)</math>  
 
<math>\left(\begin{array}{c}5\\0\end{array}\right)NOT=\left(\begin{array}{c}1\\0\end{array}\right)</math>  
  
Therefore since,<br>  
+
<br>  
  
<br><math>L(\left(\begin{array}{c}u_1 + v_1\\u_2 + v_2\end{array}\right))NOT= L(\left(\begin{array}{c}u_1\\u_2\end{array}\right))+ L(\left(\begin{array}{c}v_1\\v_2\end{array}\right))</math>  
+
Therefore since, <br><math>L(\left(\begin{array}{c}u_1 + v_1\\u_2 + v_2\end{array}\right))NOT= L(\left(\begin{array}{c}u_1\\u_2\end{array}\right))+ L(\left(\begin{array}{c}v_1\\v_2\end{array}\right))</math>  
  
<br>  
+
<br><math>L(\left(\begin{array}{c}u_1\\u_2\end{array}\right))= \left(\begin{array}{c}u_1^2\\0\end{array}\right)
 +
</math>
 +
 
 +
<br>is NOT a linear transform
  
 
[[Category:MA265Fall2011Walther]]
 
[[Category:MA265Fall2011Walther]]

Revision as of 17:58, 14 December 2011

Linear Transformations and Isomorphisms<u</u>


Vector Transformations:

A vector transformation is a function that is performed on a vector. (i.e. f:X->Y)

A vector transformation can transform a vector from Rn to Rm

$ f:\left(\begin{array}{c}x_1\\x_2\\.\\.\\a_n\end{array}\right)-> \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_m\end{array}\right) $
Where
$ X = \left(\begin{array}{c}x_1\\x_2\\.\\.\\x_n\end{array}\right) $
and
$ Y = \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_m\end{array}\right) $


Example 1:


$ f(\left(\begin{array}{c}x_1\\x_2\end{array}\right))= \left(\begin{array}{c}x_1^2\\0\end{array}\right) $

$ X=\left(\begin{array}{c}-1\\-2\end{array}\right) $

$ f(\left(\begin{array}{c}-1\\-2\end{array}\right)= \left(\begin{array}{c}-1^2\\0\end{array}\right)= \left(\begin{array}{c}1\\0\end{array}\right) $


Example 2:


$ f(\left(\begin{array}{c}x_1\\x_2\end{array}\right))= \left(\begin{array}{c}-x_1\\x_1 - x_2\\x_1\end{array}\right) $

$ X=\left(\begin{array}{c}-1\\4\end{array}\right) $

$ f(\left(\begin{array}{c}-1\\4\end{array}\right))= \left(\begin{array}{c}-(-1)\\-1 - 4\\-1\end{array}\right)= \left(\begin{array}{c}1\\- 5\\-1\end{array}\right) $


Linear Transformations:

A function L:V->W is a linear transformation of V to W if the following are true:


(1) L(u+v) = L(u) + L(v)

(2) L(c*u) = c*L(u)


In other words, a linear transformation is a vector transformation that also meets (1) and (2) denoted from now on as L:V ->W


Let's return to examples 1 and 2 to see if they are linear transformations.


Example 1:


We must check conditions (1) and (2)


(1):


$ L(\left(\begin{array}{c}u_1\\u_2\end{array}\right))= \left(\begin{array}{c}u_1^2\\0\end{array}\right) $


$ V=\left(\begin{array}{c}v_1\\v_2\end{array}\right)=\left(\begin{array}{c}2\\5\end{array}\right) $


$ L(\left(\begin{array}{c}u_1 + v_1\\u_2 + v_2\end{array}\right))= \left(\begin{array}{c}(u_1 + v_1)^2\\0\end{array}\right) $


$ L(\left(\begin{array}{c}-1 + 2\\-2 + 5\end{array}\right))= \left(\begin{array}{c}(-1 + 2)^2\\0\end{array}\right)= \left(\begin{array}{c}1\\0\end{array}\right) $


$ L(\left(\begin{array}{c}-1\\-2\end{array}\right))= \left(\begin{array}{c}-1^2\\0\end{array}\right)= \left(\begin{array}{c}1\\0\end{array}\right) $


$ L(\left(\begin{array}{c}-1\\-2\end{array}\right)= \left(\begin{array}{c}(-1)^2\\0\end{array}\right)+L(\left(\begin{array}{c}2\\5\end{array}\right))= \left(\begin{array}{c}(2)^2\\0\end{array}\right) $


$ \left(\begin{array}{c}1\\0\end{array}\right)+\left(\begin{array}{c}4\\0\end{array}\right)=\left(\begin{array}{c}5\\0\end{array}\right) $


and,

$ \left(\begin{array}{c}5\\0\end{array}\right)NOT=\left(\begin{array}{c}1\\0\end{array}\right) $


Therefore since,
$ L(\left(\begin{array}{c}u_1 + v_1\\u_2 + v_2\end{array}\right))NOT= L(\left(\begin{array}{c}u_1\\u_2\end{array}\right))+ L(\left(\begin{array}{c}v_1\\v_2\end{array}\right)) $


$ L(\left(\begin{array}{c}u_1\\u_2\end{array}\right))= \left(\begin{array}{c}u_1^2\\0\end{array}\right) $


is NOT a linear transform

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn