Line 1: Line 1:
<u>'''Linear Transformations and Isomorphisms'''</u>  
+
<u>'''Linear Transformations and Isomorphisms'''</u>&lt;u&lt;/u&gt;
 +
 
 +
----
  
 
<u>Vector Transformations:</u>  
 
<u>Vector Transformations:</u>  
Line 49: Line 51:
 
A function L:V-&gt;W is a <u>linear transformation </u>of V to W if the following are true:  
 
A function L:V-&gt;W is a <u>linear transformation </u>of V to W if the following are true:  
  
(1) L(u+v) = L(u) + L(v) (2) L(c*u) = c*L(u)
+
<br>
  
In other words, a <u>linear transformation </u>is a <u>vector transformation </u>that also meets (1) and (2).
+
(1) L(u+v) = L(u) + L(v)  
  
<br>
+
(2) L(c*u) = c*L(u)
  
 
<br>  
 
<br>  
 +
 +
In other words, a <u>linear transformation </u>is a <u>vector transformation </u>that also meets (1) and (2) denoted from now on as L:V -&gt;W
  
 
<br>  
 
<br>  
  
<math>\left(\begin{array}{cccc}1&2&3&4\\5&6&7&8\end{array}\right)</math>  
+
Let's return to examples 1 and 2 to see if they are <u>linear transformations</u>.<br>
 +
 
 +
<br> <u>Example 1:</u>
 +
 
 +
<br><math>L(\left(\begin{array}{c}u_1\\u_2\end{array}\right))= \left(\begin{array}{c}u_1^2\\0\end{array}\right)</math>
 +
 
 +
<br><math>U=\left(\begin{array}{c}u_1\\u_2\end{array}\right)=\left(\begin{array}{c}-1\\-2\end{array}\right),</math>
 +
 
 +
<br><math>V=\left(\begin{array}{c}v_1\\v_2\end{array}\right)=\left(\begin{array}{c}2\\5\end{array}\right)</math>
 +
 
 +
<br><math>L(\left(\begin{array}{c}u_1 + v_1\\u_2 + v_2\end{array}\right))= \left(\begin{array}{c}(u_1 + v_1)^2\\0\end{array}\right)</math>
 +
 
 +
<br><math>L(\left(\begin{array}{c}-1 + 2\\-2 + 5\end{array}\right))= \left(\begin{array}{c}(-1 + 2)^2\\0\end{array}\right)= \left(\begin{array}{c}1\\0\end{array}\right)</math>
 +
 
 +
<br><math>f(\left(\begin{array}{c}-1\\-2\end{array}\right))= \left(\begin{array}{c}-1^2\\0\end{array}\right)= \left(\begin{array}{c}1\\0\end{array}\right)</math>
 +
 
 +
<br> We must check conditions (1) and (2)
 +
 
 +
<br>(1):
 +
 
 +
<br>  
  
 
[[Category:MA265Fall2011Walther]]
 
[[Category:MA265Fall2011Walther]]

Revision as of 17:30, 14 December 2011

Linear Transformations and Isomorphisms<u</u>


Vector Transformations:

A vector transformation is a function that is performed on a vector. (i.e. f:X->Y)

A vector transformation can transform a vector from Rn to Rm

$ f:\left(\begin{array}{c}x_1\\x_2\\.\\.\\a_n\end{array}\right)-> \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_m\end{array}\right) $


Where


$ X = \left(\begin{array}{c}x_1\\x_2\\.\\.\\x_n\end{array}\right) $


and


$ Y = \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_m\end{array}\right) $


Example 1:


$ f(\left(\begin{array}{c}x_1\\x_2\end{array}\right))= \left(\begin{array}{c}x_1^2\\0\end{array}\right) $

$ X=\left(\begin{array}{c}-1\\-2\end{array}\right) $

$ f(\left(\begin{array}{c}-1\\-2\end{array}\right))= \left(\begin{array}{c}-1^2\\0\end{array}\right)= \left(\begin{array}{c}1\\0\end{array}\right) $


Example 2:


$ f(\left(\begin{array}{c}x_1\\x_2\end{array}\right))= \left(\begin{array}{c}-x_1\\x_1 - x_2\\x_1\end{array}\right) $

$ X=\left(\begin{array}{c}-1\\4\end{array}\right) $

$ f(\left(\begin{array}{c}-1\\4\end{array}\right))= \left(\begin{array}{c}-(-1)\\-1 - 4\\-1\end{array}\right)= \left(\begin{array}{c}1\\- 5\\-1\end{array}\right) $


Linear Transformations:

A function L:V->W is a linear transformation of V to W if the following are true:


(1) L(u+v) = L(u) + L(v)

(2) L(c*u) = c*L(u)


In other words, a linear transformation is a vector transformation that also meets (1) and (2) denoted from now on as L:V ->W


Let's return to examples 1 and 2 to see if they are linear transformations.


Example 1:


$ L(\left(\begin{array}{c}u_1\\u_2\end{array}\right))= \left(\begin{array}{c}u_1^2\\0\end{array}\right) $


$ U=\left(\begin{array}{c}u_1\\u_2\end{array}\right)=\left(\begin{array}{c}-1\\-2\end{array}\right), $


$ V=\left(\begin{array}{c}v_1\\v_2\end{array}\right)=\left(\begin{array}{c}2\\5\end{array}\right) $


$ L(\left(\begin{array}{c}u_1 + v_1\\u_2 + v_2\end{array}\right))= \left(\begin{array}{c}(u_1 + v_1)^2\\0\end{array}\right) $


$ L(\left(\begin{array}{c}-1 + 2\\-2 + 5\end{array}\right))= \left(\begin{array}{c}(-1 + 2)^2\\0\end{array}\right)= \left(\begin{array}{c}1\\0\end{array}\right) $


$ f(\left(\begin{array}{c}-1\\-2\end{array}\right))= \left(\begin{array}{c}-1^2\\0\end{array}\right)= \left(\begin{array}{c}1\\0\end{array}\right) $


We must check conditions (1) and (2)


(1):


Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal