(Time Shifting Propery)
(Time Shifting Propery)
Line 3: Line 3:
 
In CT,
 
In CT,
  
:<b><math> F(x(t-t_0)) = exp(-jwt_0)X(w)</math></b>
+
:<b><math> F(x(t-t_0)) = e^{-jwt_0}X(w)</math></b>
 +
 
 +
Proof:
 +
 
 +
<math>F(x(t-t_0)) = \int_{-\infty}^{\infty}x(t-t_0)e^{-jwt}dt </math>
 +
 
 +
:Let <math>(t-t_0) = \tau </math>
 +
:Therefore <math> d\tau = dt </math>
 +
 
 +
:<math> = \int_{-\infty}^{\infty}x(\tau)e^{-jw(\tau + t_0)}(d\tau) </math>
 +
 
 +
:<math> = \int_{-\infty}^{\infty}x(\tau)e^{-jw\tau}e^{-jwt_0}(d\tau) </math>
 +
:Since <math> e^{-jwt_0} </math> does not depend on "<math> \tau </math>" it can be taken out of the integral.
 +
 
 +
:<math> =e^{-jwt_0} \int_{-\infty}^{\infty}x(\tau)e^{-jw\tau}(d\tau) </math>
 +
Thus
 +
:<math> = e^{-jwt_0}X(w) </math>

Revision as of 09:25, 23 October 2008

Time Shifting Propery

In CT,

$ F(x(t-t_0)) = e^{-jwt_0}X(w) $

Proof:

$ F(x(t-t_0)) = \int_{-\infty}^{\infty}x(t-t_0)e^{-jwt}dt $

Let $ (t-t_0) = \tau $
Therefore $ d\tau = dt $
$ = \int_{-\infty}^{\infty}x(\tau)e^{-jw(\tau + t_0)}(d\tau) $
$ = \int_{-\infty}^{\infty}x(\tau)e^{-jw\tau}e^{-jwt_0}(d\tau) $
Since $ e^{-jwt_0} $ does not depend on "$ \tau $" it can be taken out of the integral.
$ =e^{-jwt_0} \int_{-\infty}^{\infty}x(\tau)e^{-jw\tau}(d\tau) $

Thus

$ = e^{-jwt_0}X(w) $

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010