(Time Shifting Propery)
(Time Shifting Propery)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 
===Time Shifting Propery===
 
===Time Shifting Propery===
  
In CT,
+
:<b><math> F(x(t-t_0)) = e^{-jwt_0}X(w)</math></b>
  
:<b><math> F(x(t-t_0)) = exp(-jwt_0)X(w)</math></b>
+
Proof:
 +
 
 +
<math>F(x(t-t_0)) = \int_{-\infty}^{\infty}x(t-t_0)e^{-jwt}dt </math>
 +
 
 +
:Let <math>(t-t_0) = \tau </math>
 +
:Therefore <math> d\tau = dt </math>
 +
 
 +
:<math> = \int_{-\infty}^{\infty}x(\tau)e^{-jw(\tau + t_0)}(d\tau) </math>
 +
 
 +
:<math> = \int_{-\infty}^{\infty}x(\tau)e^{-jw\tau}e^{-jwt_0}(d\tau) </math>
 +
:Since <math> e^{-jwt_0} </math> does not depend on "<math> \tau </math>" it can be taken out of the integral.
 +
 
 +
:<math> =e^{-jwt_0} \int_{-\infty}^{\infty}x(\tau)e^{-jw\tau}(d\tau) </math>
 +
Thus
 +
:<math> = e^{-jwt_0}X(w) </math>
 +
 
 +
 
 +
===Example===
 +
 
 +
Let's take the 2nd question from the Group Quiz.
 +
 
 +
Prove that <math> e^{-jw}X(-w) = F(x(-t +1 )) </math>
 +
 
 +
==Solution 1==
 +
We can solve by the definition of a Fourier Transform
 +
 
 +
<math>F(x(-t + 1)) = \int_{-\infty}^{\infty}x(-t + 1)e^{-jwt}dt </math>
 +
 
 +
:<math> = \int_{\infty}^{-\infty}x(\tau)e^{-jw(-\tau + 1)}(-d\tau) </math>
 +
:Notice the bounds have changed
 +
:<math> = \int_{-\infty}^{\infty}x(\tau)e^{-jw(-\tau + 1)}(d\tau) </math>
 +
:<math> = \int_{-\infty}^{\infty}x(\tau)e^{jw\tau}e^{-jw}(d\tau) </math>
 +
 
 +
:<math> =e^{-jw} \int_{-\infty}^{\infty}x(\tau)e^{-j(-w)\tau}(d\tau) </math>
 +
 
 +
:<math>F(x(-t + 1)) = e^{-jw}X(w) </math>
 +
 
 +
==Solution 2==
 +
:<math>F(x(-t+1)) = ? </math>
 +
:By the Time Shifting Property proven above
 +
:<math> = e^{-jw}F(x(-t)) </math>
 +
:<math> = e^{-jw}X(-w) </math>

Latest revision as of 09:42, 23 October 2008

Time Shifting Propery

$ F(x(t-t_0)) = e^{-jwt_0}X(w) $

Proof:

$ F(x(t-t_0)) = \int_{-\infty}^{\infty}x(t-t_0)e^{-jwt}dt $

Let $ (t-t_0) = \tau $
Therefore $ d\tau = dt $
$ = \int_{-\infty}^{\infty}x(\tau)e^{-jw(\tau + t_0)}(d\tau) $
$ = \int_{-\infty}^{\infty}x(\tau)e^{-jw\tau}e^{-jwt_0}(d\tau) $
Since $ e^{-jwt_0} $ does not depend on "$ \tau $" it can be taken out of the integral.
$ =e^{-jwt_0} \int_{-\infty}^{\infty}x(\tau)e^{-jw\tau}(d\tau) $

Thus

$ = e^{-jwt_0}X(w) $


Example

Let's take the 2nd question from the Group Quiz.

Prove that $ e^{-jw}X(-w) = F(x(-t +1 )) $

Solution 1

We can solve by the definition of a Fourier Transform

$ F(x(-t + 1)) = \int_{-\infty}^{\infty}x(-t + 1)e^{-jwt}dt $

$ = \int_{\infty}^{-\infty}x(\tau)e^{-jw(-\tau + 1)}(-d\tau) $
Notice the bounds have changed
$ = \int_{-\infty}^{\infty}x(\tau)e^{-jw(-\tau + 1)}(d\tau) $
$ = \int_{-\infty}^{\infty}x(\tau)e^{jw\tau}e^{-jw}(d\tau) $
$ =e^{-jw} \int_{-\infty}^{\infty}x(\tau)e^{-j(-w)\tau}(d\tau) $
$ F(x(-t + 1)) = e^{-jw}X(w) $

Solution 2

$ F(x(-t+1)) = ? $
By the Time Shifting Property proven above
$ = e^{-jw}F(x(-t)) $
$ = e^{-jw}X(-w) $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett