Line 1: Line 1:
 
This slecture was reviewed by Khalid Tahboub:
 
This slecture was reviewed by Khalid Tahboub:
 +
 +
Great job! few minor remarks:
  
 
1) I think the first equation should be
 
1) I think the first equation should be

Revision as of 20:49, 1 May 2014

This slecture was reviewed by Khalid Tahboub:

Great job! few minor remarks:

1) I think the first equation should be

$ F^{-1}(u)=inf\{ x|F(x)\geq u, \quad u\in [0, 1] \} $

instead of

$ F^{-1}(u)=inf\{ x|F(x)\leq u, \quad u\in [0, 1] \} $
2) How we reach
$ X <- F^{-1}(U)\quad $
from
$ F^{-1}(u)=inf\{ x|F(x)\geq u, \quad u\in [0, 1] \} $
is not very clear to me


3)I think the equation

$ F(x) = \int_{-\infty}^x \lambda exp(-\lambda x') dx' = \int_0^x \lambda exp(-\lambda x') dx' = [-exp(-\lambda x')]_0^x = 1-exp(-\lambda x) \leq u $

should be instead

$ F(x) = \int_{-\infty}^x \lambda exp(-\lambda x') dx' = \int_0^x \lambda exp(-\lambda x') dx' = [-exp(-\lambda x')]_0^x = 1-exp(-\lambda x) \geq u $

4) I think it might give a nice demonstration if you plot the histogram of U and X to show that this method really functions in the desired way.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang