Line 27: Line 27:
 
'''(Step 2)'''  <math>~E</math> : open set
 
'''(Step 2)'''  <math>~E</math> : open set
  
We can write <math>E=\union_{n=1}^{\infty}I_{n}</math> when <math> I_{1} I_{2} ⊆ \cdots ⊆ I_{n} ⊆ \cdots. </math>
+
We can write <math>E=\bigcup_{n=1}^{\infty}I_{n}</math> when <math> I_{1} \subseteq I_{2} /subseteq … /subseteq I_{n} /subseteq … . </math>

Revision as of 20:23, 21 July 2008

9.9. Let $ f \in L^{1}([0,1]) $ and let $ F(x)=\int_{0}^{x}f(t)dt $. If $ ~E $ is a measurable subset of $ ~[0,1] $, show that

(a) $ F(E)=\{y: \exist ~x \in E $ with $ ~y=F(x)\} $ is measurable.

Proof.

Let $ \int_{0}^{1}|f(t)|dt=M<\infty $.

$ \forall ~ x,y \in [0,1] (x \leq y) $,

$ |F(y)-F(x)|=\int_{x}^{y}f(t)dt=\int_{0}^{1}f(t) \chi_{[x,y]}(t) dt~ \stackrel{\rm Holder} {\leq} ~\left(\int_{0}^{1}|f(t)|dt\right)~||\chi_{[x,y]}||_{\infty} = M|x-y| $.

Hence $ ~F $ is a Lipschitz map, which preserves measurability. This proves (a).


(b) $ m(F(E)) \leq \int_{E}|f(t)| dt $.

Proof.

(Step 1) $ ~E=(a,b) $

First assume that $ f \geq 0 $. Since $ ~F $ is monotone and continuous, $ m(F(E))=|F(b)-F(a)|=\left|\int_{a}^{b}f(t) dt \right| \leq \int_{E}|f(t)| dt $.

In general, $ m(F(E)) \leq \int_{a}^{b}f^{+}(t) dt + \int_{a}^{b} f^{-}(t)dt =\int_{a}^{b}|f(t)|dt =\int_{E}|f(t)|dt $.


(Step 2) $ ~E $ : open set

We can write $ E=\bigcup_{n=1}^{\infty}I_{n} $ when $ I_{1} \subseteq I_{2} /subseteq … /subseteq I_{n} /subseteq … . $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett