Line 1: Line 1:
 
'''9.9.''' Let <math>f \in L^{1}([0,1])</math> and let <math> F(x)=\int_{0}^{x}f(t)dt </math>. If <math> ~E  </math> is a measurable subset of <math>~[0,1]  </math>, show that
 
'''9.9.''' Let <math>f \in L^{1}([0,1])</math> and let <math> F(x)=\int_{0}^{x}f(t)dt </math>. If <math> ~E  </math> is a measurable subset of <math>~[0,1]  </math>, show that
  
'''(a)''' <math>~~ F(E)=\{y: \exist ~x \in E </math> with <math> ~y=F(x)\} </math> is measurable.
+
'''(a)'''   <math> F(E)=\{y: \exist ~x \in E </math> with <math> ~y=F(x)\} </math> is measurable.
  
 
'''Proof.'''
 
'''Proof.'''
  
'''(b)''' <math>~~ m(F(E)) \leq \int_{E}|f(t)| dt </math>.
+
Let <math>\int_{0}^{1}|f(t)|dt=M<\infty </math>.
 +
 
 +
<math>\forall ~ x,y \in [0,1] (x \leq y)</math>,
 +
 
 +
<math> |F(y)-F(x)|=\int_{x}^{y}f(t)dt=\int_{0}^{1}f(t) \chi_{[x,y]}(t) dt \{leq}
 +
 
 +
'''(b)'''   <math> m(F(E)) \leq \int_{E}|f(t)| dt </math>.
  
 
'''Proof.'''
 
'''Proof.'''

Revision as of 19:28, 21 July 2008

9.9. Let $ f \in L^{1}([0,1]) $ and let $ F(x)=\int_{0}^{x}f(t)dt $. If $ ~E $ is a measurable subset of $ ~[0,1] $, show that

(a) $ F(E)=\{y: \exist ~x \in E $ with $ ~y=F(x)\} $ is measurable.

Proof.

Let $ \int_{0}^{1}|f(t)|dt=M<\infty $.

$ \forall ~ x,y \in [0,1] (x \leq y) $,

$ |F(y)-F(x)|=\int_{x}^{y}f(t)dt=\int_{0}^{1}f(t) \chi_{[x,y]}(t) dt \{leq} '''(b)''' <math> m(F(E)) \leq \int_{E}|f(t)| dt $.

Proof.

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn