(New page: 9.9. Let <math>f \in L^{1}([0,1])</math> and let <math> F(x)=\int_{0}^{x}f(t)dt </math>. If <math>E </math> is a measurable subset of <math>[0,1] </math>, show that (a) <math> F(E)=\{y...)
 
Line 1: Line 1:
9.9. Let <math>f \in L^{1}([0,1])</math> and let <math> F(x)=\int_{0}^{x}f(t)dt </math>. If <math>E  </math> is a measurable subset of <math>[0,1]  </math>, show that
+
'''9.9.''' Let <math>f \in L^{1}([0,1])</math> and let <math> F(x)=\int_{0}^{x}f(t)dt </math>. If <math> ~E  </math> is a measurable subset of <math>~[0,1]  </math>, show that
  
(a)  <math> F(E)=\{y: \exist x \in E , y=F(x)\} </math> is measurable.
+
'''(a)''' <math>~~ F(E)=\{y: \exist ~x \in E </math> with <math> ~y=F(x)\} </math> is measurable.
  
(b)  <math> m(F(E)) \leq \int_{E}|f(t)| dt </math>.
+
'''Proof.'''
 +
 
 +
'''(b)''' <math>~~ m(F(E)) \leq \int_{E}|f(t)| dt </math>.
 +
 
 +
'''Proof.'''

Revision as of 19:24, 21 July 2008

9.9. Let $ f \in L^{1}([0,1]) $ and let $ F(x)=\int_{0}^{x}f(t)dt $. If $ ~E $ is a measurable subset of $ ~[0,1] $, show that

(a) $ ~~ F(E)=\{y: \exist ~x \in E $ with $ ~y=F(x)\} $ is measurable.

Proof.

(b) $ ~~ m(F(E)) \leq \int_{E}|f(t)| dt $.

Proof.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang