(New page: In Progress... Ben <math>g(x)</math> is monotone: Take <math>x<y</math>. Then <math>g(x) = \sum{f_n(x)} \le \sum{f_n(y)} = g(y)</math>. Since <math>f_n(x) \in AC[0,1]</math> and <math>f_...)
 
 
Line 1: Line 1:
In Progress... Ben
+
Since <math>f_n(x) \in AC[0,1]</math> and <math>f_n(0)=0, f(x) = \int_0^x{f_n'(t)dt} </math>
  
<math>g(x)</math> is monotone: Take <math>x<y</math>. Then <math>g(x) = \sum{f_n(x)} \le \sum{f_n(y)} = g(y)</math>.
+
<math>g(x) = \sum_{n=0}^\infty{\int_0^x{f_n'(t)dt}}= lim_{N\rightarrow\infty}\sum_{n=0}^N{\int_0^x{f_n'(t)dt}} = lim_{N\rightarrow\infty}\int_0^x{\sum_{n=0}^N{f_n'(t)dt}}</math> becuase the sum is finite.
  
Since <math>f_n(x) \in AC[0,1]</math> and <math>f_n(0)=0, f(x) = \int_0^x{f_n'(t)dt} </math>
 
  
 +
Since <math>f_n(x)</math> is monotone, <math>f_n'(x) \ge 0</math>. Therefore, <math>\sum_{n=0}^N{f_n'(t)dt}</math> is monotone as a function of <math>N</math>.
 +
 +
<math>g(x) \stackrel{\rm MCT} {=} \int_0^x{lim_{N\rightarrow\infty}\sum_{n=0}^N{f_n'(t)}dt} = \int_0^x{\sum_{n=0}^\infty{f_n'(t)}dt}</math>
  
 +
Call <math>h(x) = \sum_{n=0}^\infty{f_n'(t)}</math>. <math>\int_0^1 |h(t)|dt = g(1) < \infty</math> so <math>h(x)\in L^1[0,1]</math>
  
<table>
+
<math>g(x) = \int_0^x h(t) dt</math> so <math>g(x) \in AC[0,1]</math> by the absolute continuity of the integral.
<tr>
+
<td><math>g(x)</math><td><math> = \sum{\int_0^x{f_n'(t)dt}}</math>
+
<tr>
+
<td>                <td><math> = \sum{\int_0^x{f_n'(t)dt}}</math>
+
  
</table>
+
--[[User:Bbartle|Bbartle]] 11:43, 10 July 2008 (EDT)

Latest revision as of 11:43, 10 July 2008

Since $ f_n(x) \in AC[0,1] $ and $ f_n(0)=0, f(x) = \int_0^x{f_n'(t)dt} $

$ g(x) = \sum_{n=0}^\infty{\int_0^x{f_n'(t)dt}}= lim_{N\rightarrow\infty}\sum_{n=0}^N{\int_0^x{f_n'(t)dt}} = lim_{N\rightarrow\infty}\int_0^x{\sum_{n=0}^N{f_n'(t)dt}} $ becuase the sum is finite.


Since $ f_n(x) $ is monotone, $ f_n'(x) \ge 0 $. Therefore, $ \sum_{n=0}^N{f_n'(t)dt} $ is monotone as a function of $ N $.

$ g(x) \stackrel{\rm MCT} {=} \int_0^x{lim_{N\rightarrow\infty}\sum_{n=0}^N{f_n'(t)}dt} = \int_0^x{\sum_{n=0}^\infty{f_n'(t)}dt} $

Call $ h(x) = \sum_{n=0}^\infty{f_n'(t)} $. $ \int_0^1 |h(t)|dt = g(1) < \infty $ so $ h(x)\in L^1[0,1] $

$ g(x) = \int_0^x h(t) dt $ so $ g(x) \in AC[0,1] $ by the absolute continuity of the integral.

--Bbartle 11:43, 10 July 2008 (EDT)

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach