Line 1: Line 1:
 
                                                   Inverse Z-transform
 
                                                   Inverse Z-transform
  
  <math> x[n] = \oint_C {X(Z)}{Z ^ {n-1}} , dZ \ </math>
+
  <math> x[n] = \oint_C {X(Z)} {Z ^ {n-1}} , dZ \ </math>
 
  where C is a closed counterwise countour inside the ROC of the Z- transform and around the origin.
 
  where C is a closed counterwise countour inside the ROC of the Z- transform and around the origin.
  
             <math> = \sum_{poles  a_i ( X(Z) Z ^ {n-1})}  Residue ( X(Z) Z ^ {n-1}) \ </math>
+
             <math> = \sum_{poles  a_i ( X(Z) Z ^ {n-1})}  Residue ( X(Z) Z ^ {n-1}) \ </math>
             <math> = \sum_{poles  a_i ( X(Z) Z ^ {n-1})} \ </math>  Coefficient of degree (-1) term on the power series expansion of <math> ( X(Z) Z ^ {n-1}) \ </math>  <math> about a_i \ </math>
+
             <math> = \sum_{poles  a_i ( X(Z) Z ^ {n-1})} \ </math>  Coefficient of degree (-1) term on the power series expansion of <math> ( X(Z) Z ^ {n-1}) \ </math>  <math> about a_i \ </math>
  
  

Revision as of 06:05, 23 September 2009

                                                  Inverse Z-transform
$  x[n] = \oint_C {X(Z)} {Z ^ {n-1}} , dZ \  $
where C is a closed counterwise countour inside the ROC of the Z- transform and around the origin.
            $  = \sum_{poles  a_i ( X(Z)  Z ^ {n-1})}  Residue ( X(Z)  Z ^ {n-1}) \  $
            $  = \sum_{poles  a_i ( X(Z)  Z ^ {n-1})} \  $  Coefficient of degree (-1) term on the power series expansion of $  ( X(Z)  Z ^ {n-1}) \  $  $  about a_i \  $


So inverting X(Z) involves power series.

$ f(X)= \sum_{n=0}^\infty \frac{f^n X_0 (X-X_0)^n}{n!} \ $ , near $ X_0 $

$ \frac{1}{(1-x)} = \sum_{n=0}^\infty X^n \ $ , geometric series where |X|=1


Computing equivalent to complex integration formula's

1) Write X(Z) as a power series.

$ X(Z) = \sum_{n=-\infty}^{\infty} \ C_n Z^n \ $ , series must converge for all Z's on the ROC of X(Z)

2) Observe that

$ X(Z) = \sum_{n=-\infty}^{\infty} \ x[n] Z^{-n} \ $

i.e.,

$ X(Z) = \sum_{n=-\infty}^{\infty} \ x[-n] Z^n \ $

3) By comparison

$ X[-n] = \ C_n \ $

or

$ X[n] = \ C_ -n $

Example 1:

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett