Line 6: Line 6:
 
             <math> = \sum_{poles  a_i ( X(Z) Z ^ (n-1))}  Residue ( X(Z) Z ^ (n-1)) \ </math>
 
             <math> = \sum_{poles  a_i ( X(Z) Z ^ (n-1))}  Residue ( X(Z) Z ^ (n-1)) \ </math>
 
             <math> = \sum_{poles  a_i ( X(Z) Z ^ (n-1))}  Coefficient of degree (-1) term on the power series expansion of ( X(Z) Z ^ (n-1)) about a_i \ </math>
 
             <math> = \sum_{poles  a_i ( X(Z) Z ^ (n-1))}  Coefficient of degree (-1) term on the power series expansion of ( X(Z) Z ^ (n-1)) about a_i \ </math>
 +
 +
So inverting X(Z) involves power series.
 +
 +
<math>f(X)= \sum_{n=0}^\infty k^2</math>

Revision as of 05:37, 23 September 2009

                                                  Inverse Z-transform
$  x[n] = \oint_C {X(Z)}{Z ^ (n-1)} , dZ \  $
where C is a closed counterwise countour inside the ROC of the Z- transform and around the origin.
            $  = \sum_{poles  a_i ( X(Z) Z ^ (n-1))}  Residue ( X(Z) Z ^ (n-1)) \  $
            $  = \sum_{poles  a_i ( X(Z) Z ^ (n-1))}  Coefficient of degree (-1) term on the power series expansion of ( X(Z) Z ^ (n-1)) about a_i \  $

So inverting X(Z) involves power series.

$ f(X)= \sum_{n=0}^\infty k^2 $

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics