Revision as of 06:59, 16 December 2011 by Cdelagar (Talk | contribs)


Inverse of a Matrix


Definition: Let A be a square matrix of order n x n(square matrix). If there exists a matrix B such that

A B = I n = B A

Then B is called the inverse matrix of A.


Conditions

A n x n is invertible (non-singular) if: 
  • Ax=0 has a unique solution
  • There is a B matrix such that A B = In
  • Ax=b has a unique solution for any b---x=A − 1



Properties

  • (AB) − 1 = B − 1A − 1
  • (A1 A2.....Ar) − 1=Ar − 1A'''r − 1 − 1...A1 − 1
  • (A − 1) − 1 = A
  • (A − 1)T = (AT) − 1



Calculations

$ \left(\begin{array}{cccc}2&3|1&0\\4&5|0&1\end{array}\right) $ ----->$ \left(\begin{array}{cccc} 2 & 3 | 1 & 0 \\ 0 & -1 | -2 & 1 \end{array}\right) $------>$ \left(\begin{array}{cccc} 2 & 0 | -5 & 3 \\ 0 & -1 | -2 & 1 \end{array}\right) $ ----> $ \left(\begin{array}{cccc} 1 & 0 | -5/2 & 3/2 \\ 0 & 1 | 2 & -1 \end{array}\right) $


$ A^{-1}=\left(\begin{array}{cccc} -5/2 & 3/2 \\ 2 & -1 \end{array}\right) $





Note: Calculating a Reuduced Row echelon form for a square matrix which n >5 can get complicated and if you get the Reduced row echelon form by consequence you get the Inverse wrong. In some cases

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett