Revision as of 14:04, 19 December 2014 by Mdeufel (Talk | contribs)


Inverse Z Transform *under construction*


Introduction

The Z Transform is the generalized version of the DTFT. This is done by replacing $ e^{j\omega} $ with $ re^{j\omega} = z $. The DTFT is equal to the Z Transform when $ |z| =1 $

$ \begin{align} \text{DTFT: } X(w) &= \sum_{n=-\infty}^\infty x[n]e^{-j\omega n}\\ \text{Z-Transform: } X(z) &= \sum_{n=-\infty}^\infty x[n]z^{-n}\\ \text{Inv. Z-Transform: } x[n] &= \frac{1}{2\pi j}\oint_{c}X(z)z^{n-1}dz \end{align} $

Region of Convergence

The R.O.C. determines the region on the Z Plane where the Z Transform converges. The ROC depends solely on the 'r' value that is contained in 'z'.

$ \begin{align} \text{Remember: } z &=re^{j\omega} \end{align} $

""II. Example Problems of the Inverse Z Transform""


We will find the Inverse Z transform of various signals by manipulation and then using direct Inversion.
On the first example we will go slowly over each step.

Ex. 1 Find the Inverse Z transform of the following signal

$ X(z)=\frac{1}{1-z}, \text{ ROC } |z|<1 $

note: It is important to realize that we are not going to try to use the direct formula for an inverse Z transform, Instead our approach will be to manipulate the signal so that we can directly compare it with the Z transform equation and by inspection obtain the Inverse Z transform.
First we need to manipulate the given ROC inequality to be in the following form, with 'A' being some expression that contains z
$ |A| < 1 $
In this case this is already satisfied with
$ A = z $
Then we need to manipulate the given signal to be in the following form, B is just some expression that is the result of adjusting the equation (in this case B = 1)
$ X(z)=B\frac{1}{1-A} $
Using a infinite Geometric sum we can obtain following...
$ X(z) = \sum_{n=0}^{\infty} 1(z^{n}) = \sum_{n=-\infty}^{\infty} z^{n} u[n] $
$ \text{let } k = -n \text{ then, } X(z) = \sum_{k=-\infty}^{\infty} z^{-k} u[-k]= \sum_{k=-\infty}^{\infty}u[-k] z^{-k} $
By comparison with the Z Transform definition, we can determine $ x[n] $
$ x[n] = u[-n] $

Ex. 2 Find the Inverse Z transform of the following signal

$ X(z)=\frac{1}{1-z}, \text{ ROC } |z|>1 $

First we need to manipulate the given ROC inequality to be in the following form, with 'A' being some expression that contains z
$ |A| < 1 $
In this case
$ A = \frac{1}{z} $
Manipulate the given signal
$ X(z)=\frac{1}{1-z} = \frac{1}{z} \frac{1}{1-(-\frac{1}{z})} $
Using a infinite Geometric sum we can obtain
$ X(z) = \sum_{n=0}^{\infty} (\frac{-1}{z})^{n}\frac{1}{z} = \sum_{n=0}^{\infty}(-1)^{n} z^{-n-1} = \sum_{n=-\infty}^{\infty} (-1)^{n} z^{-n-1} u[n] $
$ \text{ let } k=n+1, \text{ then } X(z) = \sum_{k=-\infty}^{\infty}(-1)^{k-1} z^{-k} u[k-1] = \sum_{k=-\infty}^{\infty} (-1)^{k-1} u[k-1] z^{-k} $
By comparison with the Z Transform definition, we can determine $ x[n] $
$ x[n] = (-1)^{n-1} u[n-1] $

Ex. 4 Find the Inverse Z transform of the following signal

$ X(z)=\frac{1}{1-2z}, \text{ ROC } |2z|>1 $

Manipulate the given signal
$ X(z)=\frac{1}{1-2z} = \frac{1}{2z} \frac{1}{1-(-\frac{1}{2z})} $
Using a infinite Geometric sum we can obtain
$ X(z) = \sum_{n=0}^{\infty} (\frac{-1}{2z})^{n}\frac{1}{2z} = \sum_{n=0}^{\infty} (-2z)^{-n}(2z)^{-1}= \sum_{n=-\infty}^{\infty} \frac{1}{2}(-2)^{-n}z^{-n-1} u[n] $
$ \text{ let } k=n+1, \text{ then } X(z) = \sum_{k=-\infty}^{\infty} \frac{1}{2}(-2)^{-k+1}u[k-1] z^{-k} $
By comparison with the Z Transform definition, we can determine $ x[n] $
$ x[n] = \frac{1}{2}(-2)^{-k+1}u[n-1] $

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman