Line 42: Line 42:
 
|<math>\left ( \frac{a_1 + a_1 + \cdots + a_n}{n} \right ) \left ( \frac{ b_1 +  b_2 + \cdots +b_n}{n} \right ) \leqq \frac{a_1b_1+a_2b_2+\cdots+a_nb_n}{n}</math>
 
|<math>\left ( \frac{a_1 + a_1 + \cdots + a_n}{n} \right ) \left ( \frac{ b_1 +  b_2 + \cdots +b_n}{n} \right ) \leqq \frac{a_1b_1+a_2b_2+\cdots+a_nb_n}{n}</math>
 
|-
 
|-
|<math>(b_1 b_2 + \cdots +b_n)(b_1 +  b_2 + \cdots +b_n) \leqq n(b_1 b_2 + \cdots +b_n)</math>
+
|<math>(a_1 a_2 + \cdots +a_n)(b_1 +  b_2 + \cdots +b_n) \leqq n(a_1b_1 a_2b_2 + \cdots +a_nb_n)</math>
 
|-
 
|-
 
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" |  Minkowski Inequality
 
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" |  Minkowski Inequality

Revision as of 09:11, 25 November 2010

Inequalities
Triangular Inequalities
$ \vert a_1 \vert - \vert a_2 \vert \leqq \vert a_1 +a_2 \vert \leqq \vert a_1 \vert + \vert a_2 \vert $
$ \vert a_1 + a_2 + \cdots + a_n \vert \leqq \vert a_1 \vert + \vert a_2 \vert + \cdots + \vert a_n \vert $
Cauchy-schwarz Inequality
$ \vert a_1 b_1 + a_2b_2 + \cdots + a_nb_n \vert ^2 \leqq \left ( \vert a_1 \vert ^2 + \vert a_2 \vert ^2 + \cdots + \vert a_n \vert ^2 \right ) \left ( \vert b_1 \vert ^2 + \vert b_2 \vert ^2 + \cdots + \vert b_n \vert ^2 \right ) $
$ \mbox{ The equality is valid if and only if } a_1/b_1 = a_2/b_2 = \cdots = a_n/b_n $
Inequalities Involving Arithmetic, Geometric and Harmonic
$ \mbox{ if } A, \ G \mbox{ and } H \mbox{ are arithmatic, geometric and harmonic means of a positive numbers } a_1 , a_2 ,\cdots , a_n, \mbox{ then } $
$ H \leqq G \leqq A $
$ A = \frac{a_1 + a_2 + \cdots + a_n}{n} \qquad \qquad G = \sqrt[n]{a_1a_2 \cdots a_n} \qquad \qquad \frac{1}{H} = \frac{1}{n} \left ( {1 \over a_1} + {1 \over a_2 }+ \cdots +{1 \over a_n } \right ) $
$ \mbox{ the equality occures only if } a_1 = a_2 =\cdots = a_n. $
Holder Inequality
$ \vert a_1 b_1 + a_2b_2 + \cdots + a_nb_n \vert \leqq \left ( \vert a_1 \vert ^p + \vert a_2 \vert ^p + \cdots + \vert a_n \vert ^p \right ) ^{1/p} \left ( \vert b_1 \vert ^q + \vert b_2 \vert ^q + \cdots + \vert b_n \vert ^q \right ) ^{1/q} $
$ {1 \over p} + {1 \over q} = 1 \qquad \qquad p > 1. q > 1 $
$ \mbox{ The equality occures only if } \vert a_1 \vert ^{p-1} / \vert b_1 \vert = \vert a_2 \vert ^{p-1} / \vert b_2 \vert = \cdots =\vert a_n \vert ^{p-1} / \vert n_1 \vert . $
$ \mbox{ for } p = q = 2, \mbox{ the formula reduces to Cauchy-Shwartz Inequality}. $
Tchebytchev Inequality
$ \mbox{ if } a_1 \geqq a_2 \geqq \cdots \geqq a_n \mbox{ and } b_1 \geqq b_2 \geqq \cdots \geqq b_n \mbox{ then } $
$ \left ( \frac{a_1 + a_1 + \cdots + a_n}{n} \right ) \left ( \frac{ b_1 + b_2 + \cdots +b_n}{n} \right ) \leqq \frac{a_1b_1+a_2b_2+\cdots+a_nb_n}{n} $
$ (a_1 + a_2 + \cdots +a_n)(b_1 + b_2 + \cdots +b_n) \leqq n(a_1b_1 + a_2b_2 + \cdots +a_nb_n) $
Minkowski Inequality
Cauchy-schwarz Inequality for Integrals
Holder Inequality for Integrals
Minkowski Inequality for Integrals

Back to Collective Table

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009