Line 11: Line 11:
 
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" |  Cauchy-schwarz Inequality
 
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" |  Cauchy-schwarz Inequality
 
|-
 
|-
| <math> \vert a_1b_1 + a_2b_2 + \cdots + a_nb_n \vert ^2 \leqq \left ( \vert a_1 \vert ^2 + \vert a_2 \vert ^2 + \cdots + \vert a_n \vert ^2 \right ) \left ( \vert b_1 \vert ^2 + \vert b_2 \vert ^2 + \cdots + \vert b_n \vert ^2 \right )</math>  
+
| <math> \vert a_1 b_1 + a_2b_2 + \cdots + a_nb_n \vert ^2 \leqq \left ( \vert a_1 \vert ^2 + \vert a_2 \vert ^2 + \cdots + \vert a_n \vert ^2 \right ) \left ( \vert b_1 \vert ^2 + \vert b_2 \vert ^2 + \cdots + \vert b_n \vert ^2 \right )</math>  
 
|-
 
|-
 
|<math> \mbox{ The equality is valid if and only if } a_1/b_1 = a_2/b_2 = \cdots = a_n/b_n
 
|<math> \mbox{ The equality is valid if and only if } a_1/b_1 = a_2/b_2 = \cdots = a_n/b_n
Line 22: Line 22:
 
|<math> H \leqq G \leqq A</math>
 
|<math> H \leqq G \leqq A</math>
 
|-
 
|-
|<math> A = \frac{a_1+a_2+\cdots + a_n}{n} \qquad \qquad G = \sqrt [n]{a_a_2 \cdots a_n} \qquad \qquad \frac{1}{H} = \frac{1}{n} \left ( {1 \over a_1}+{1 \over a_2}+ \cdots +{1 \over a_n}\ right ) </math>  
+
|<math> A = \frac{a_1 + a_2 + \cdots + a_n}{n} \qquad \qquad G = \sqrt[n]{a_1a_2 \cdots a_n} \qquad \qquad \frac{1}{H} = \frac{1}{n} \left ( {1 \over a_1} + {1 \over a_2 }+ \cdots +{1 \over a_n } \right ) </math>  
 
|-  
 
|-  
 
|<math> \mbox{ the equality occures only if } a_1 = a_2 =\cdots = a_n. </math>
 
|<math> \mbox{ the equality occures only if } a_1 = a_2 =\cdots = a_n. </math>

Revision as of 08:25, 25 November 2010

Inequalities
Triangular Inequalities
$ \vert a_1 \vert - \vert a_2 \vert \leqq \vert a_1 +a_2 \vert \leqq \vert a_1 \vert + \vert a_2 \vert $
$ \vert a_1 + a_2 + \cdots + a_n \vert \leqq \vert a_1 \vert + \vert a_2 \vert + \cdots + \vert a_n \vert $
Cauchy-schwarz Inequality
$ \vert a_1 b_1 + a_2b_2 + \cdots + a_nb_n \vert ^2 \leqq \left ( \vert a_1 \vert ^2 + \vert a_2 \vert ^2 + \cdots + \vert a_n \vert ^2 \right ) \left ( \vert b_1 \vert ^2 + \vert b_2 \vert ^2 + \cdots + \vert b_n \vert ^2 \right ) $
$ \mbox{ The equality is valid if and only if } a_1/b_1 = a_2/b_2 = \cdots = a_n/b_n $
Inequalities Involving Arithmetic, Geometric and Harmonic
$ \mbox{ if } A, \ G \mbox{ and } H \mbox{ are arithmatic, geometric and harmonic means of a positive numbers } a_1 , a_2 ,\cdots , a_n, \mbox{ then } $
$ H \leqq G \leqq A $
$ A = \frac{a_1 + a_2 + \cdots + a_n}{n} \qquad \qquad G = \sqrt[n]{a_1a_2 \cdots a_n} \qquad \qquad \frac{1}{H} = \frac{1}{n} \left ( {1 \over a_1} + {1 \over a_2 }+ \cdots +{1 \over a_n } \right ) $
$ \mbox{ the equality occures only if } a_1 = a_2 =\cdots = a_n. $
Holder Inequality
Tchebytchev Inequality
Minkowski Inequality
Cauchy-schwarz Inequality for Integrals
Holder Inequality for Integrals
Minkowski Inequality for Integrals

Back to Collective Table

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood