Line 42: Line 42:
 
|<math>\left ( \frac{a_1 + a_1 + \cdots + a_n}{n} \right ) \left ( \frac{ b_1 +  b_2 + \cdots +b_n}{n} \right ) \leqq \frac{a_1b_1+a_2b_2+\cdots+a_nb_n}{n}</math>
 
|<math>\left ( \frac{a_1 + a_1 + \cdots + a_n}{n} \right ) \left ( \frac{ b_1 +  b_2 + \cdots +b_n}{n} \right ) \leqq \frac{a_1b_1+a_2b_2+\cdots+a_nb_n}{n}</math>
 
|-
 
|-
|<math>(b_1 b_2 + \cdots +b_n)(b_1 +  b_2 + \cdots +b_n) \leqq n(b_1 b_2 + \cdots +b_n)</math>
+
|<math>(a_1 a_2 + \cdots +a_n)(b_1 +  b_2 + \cdots +b_n) \leqq n(a_1b_1 a_2b_2 + \cdots +a_nb_n)</math>
 
|-
 
|-
 
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" |  Minkowski Inequality
 
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" |  Minkowski Inequality

Revision as of 09:11, 25 November 2010

Inequalities
Triangular Inequalities
$ \vert a_1 \vert - \vert a_2 \vert \leqq \vert a_1 +a_2 \vert \leqq \vert a_1 \vert + \vert a_2 \vert $
$ \vert a_1 + a_2 + \cdots + a_n \vert \leqq \vert a_1 \vert + \vert a_2 \vert + \cdots + \vert a_n \vert $
Cauchy-schwarz Inequality
$ \vert a_1 b_1 + a_2b_2 + \cdots + a_nb_n \vert ^2 \leqq \left ( \vert a_1 \vert ^2 + \vert a_2 \vert ^2 + \cdots + \vert a_n \vert ^2 \right ) \left ( \vert b_1 \vert ^2 + \vert b_2 \vert ^2 + \cdots + \vert b_n \vert ^2 \right ) $
$ \mbox{ The equality is valid if and only if } a_1/b_1 = a_2/b_2 = \cdots = a_n/b_n $
Inequalities Involving Arithmetic, Geometric and Harmonic
$ \mbox{ if } A, \ G \mbox{ and } H \mbox{ are arithmatic, geometric and harmonic means of a positive numbers } a_1 , a_2 ,\cdots , a_n, \mbox{ then } $
$ H \leqq G \leqq A $
$ A = \frac{a_1 + a_2 + \cdots + a_n}{n} \qquad \qquad G = \sqrt[n]{a_1a_2 \cdots a_n} \qquad \qquad \frac{1}{H} = \frac{1}{n} \left ( {1 \over a_1} + {1 \over a_2 }+ \cdots +{1 \over a_n } \right ) $
$ \mbox{ the equality occures only if } a_1 = a_2 =\cdots = a_n. $
Holder Inequality
$ \vert a_1 b_1 + a_2b_2 + \cdots + a_nb_n \vert \leqq \left ( \vert a_1 \vert ^p + \vert a_2 \vert ^p + \cdots + \vert a_n \vert ^p \right ) ^{1/p} \left ( \vert b_1 \vert ^q + \vert b_2 \vert ^q + \cdots + \vert b_n \vert ^q \right ) ^{1/q} $
$ {1 \over p} + {1 \over q} = 1 \qquad \qquad p > 1. q > 1 $
$ \mbox{ The equality occures only if } \vert a_1 \vert ^{p-1} / \vert b_1 \vert = \vert a_2 \vert ^{p-1} / \vert b_2 \vert = \cdots =\vert a_n \vert ^{p-1} / \vert n_1 \vert . $
$ \mbox{ for } p = q = 2, \mbox{ the formula reduces to Cauchy-Shwartz Inequality}. $
Tchebytchev Inequality
$ \mbox{ if } a_1 \geqq a_2 \geqq \cdots \geqq a_n \mbox{ and } b_1 \geqq b_2 \geqq \cdots \geqq b_n \mbox{ then } $
$ \left ( \frac{a_1 + a_1 + \cdots + a_n}{n} \right ) \left ( \frac{ b_1 + b_2 + \cdots +b_n}{n} \right ) \leqq \frac{a_1b_1+a_2b_2+\cdots+a_nb_n}{n} $
$ (a_1 + a_2 + \cdots +a_n)(b_1 + b_2 + \cdots +b_n) \leqq n(a_1b_1 + a_2b_2 + \cdots +a_nb_n) $
Minkowski Inequality
Cauchy-schwarz Inequality for Integrals
Holder Inequality for Integrals
Minkowski Inequality for Integrals

Back to Collective Table

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett