(New page: {| |- ! style="background: rgb(228, 188, 126) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initia...)
 
Line 9: Line 9:
 
|-
 
|-
 
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" |  Cauchy-schwarz Inequality
 
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" |  Cauchy-schwarz Inequality
 +
|-
 
| align="right" style="padding-right: 1em;" | Uniform random variable over (a,b)
 
| align="right" style="padding-right: 1em;" | Uniform random variable over (a,b)
 
| <math>\,E[X] = \frac{a+b}{2},\ \ Var(X) = \frac{(b-a)^2}{12}\,</math>  
 
| <math>\,E[X] = \frac{a+b}{2},\ \ Var(X) = \frac{(b-a)^2}{12}\,</math>  

Revision as of 12:38, 22 November 2010

Inequalities
Triangulare Inequalities
The complement of an event A (i.e. the event A not occurring) $ \,P(A^c) = 1 - P(A)\, $
Cauchy-schwarz Inequality
Uniform random variable over (a,b) $ \,E[X] = \frac{a+b}{2},\ \ Var(X) = \frac{(b-a)^2}{12}\, $
Gaussian random variable with parameter $ \mu \mbox{ and } \sigma^2 $ $ \,E[X] = \mu,\ \ Var(X) = \sigma^2\, $
Exponential random variable with parameter $ \lambda $ $ \,E[X] = \frac{1}{\lambda},\ \ Var(X) = \frac{1}{\lambda^2}\, $

Back to Collective Table

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood