Line 10: Line 10:
 
<math>dx=\frac{dy}{\alpha}</math>
 
<math>dx=\frac{dy}{\alpha}</math>
  
<math>\displaystyle\int_{-\infty}^{\infty}\delta(\alpha x)dx=\int_{-\infty}^{\infty}\delta(y)\frac{dy}{\alpha}=frac{1}{\alpha}</math>
+
<math>\displaystyle\int_{-\infty}^{\infty}\delta(\alpha x)dx=\int_{-\infty}^{\infty}\delta(y)\frac{dy}{\alpha}=\frac{1}{\alpha}</math>

Revision as of 08:26, 20 September 2009

Scaling of the Dirac Delta (Impulse Function)

$ \displaystyle\delta(\alpha f)=\frac{1}{\alpha}\delta(f) $ $ \textstyle{ for }\alpha>0 $

Mini Proof

$ \int_{-\infty}^{\infty}\delta(x)dx = 1 $

Let $ \displaystyle y=\alpha x $

$ dx=\frac{dy}{\alpha} $

$ \displaystyle\int_{-\infty}^{\infty}\delta(\alpha x)dx=\int_{-\infty}^{\infty}\delta(y)\frac{dy}{\alpha}=\frac{1}{\alpha} $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang