Line 13: Line 13:
 
<math>\sum_{n=1}^N \dfrac{\left(n+k\right)!}{\left(n-1\right)!} = \dfrac1{k+2}\cdot\dfrac{\left(N+k+1\right)!}{\left(N-1\right)!}\quad \mathrm{for}\;k\in\mathbb{N}</math>
 
<math>\sum_{n=1}^N \dfrac{\left(n+k\right)!}{\left(n-1\right)!} = \dfrac1{k+2}\cdot\dfrac{\left(N+k+1\right)!}{\left(N-1\right)!}\quad \mathrm{for}\;k\in\mathbb{N}</math>
  
-----------------------------
 
S5.2_45
 
<!-- \left(  \right) -->
 
<!-- <math>  </math> -->
 
 
<math>f\left( x \right)=2x^3</math>
 
 
  <math>
 
\lim_{N\rightarrow\infty}\sum_{n=1}^Nf\left( x_n^* \right)\,\Delta x_n
 
</math>
 
 
<math>
 
=\lim_{N\rightarrow\infty}\sum_{n=1}^N2\cdot\left( \dfrac nN \right)^3\cdot\dfrac1N
 
</math>
 
 
[[Category:MA181Fall2011Bell]]
 
[[Category:MA181Fall2011Bell]]

Revision as of 16:10, 5 September 2011

Homework 2 collaboration area

Here's some interesting stuff:

$ \sum_{n=1}^N 1 = \dfrac11N $

$ \sum_{n=1}^N n = \dfrac12N\left(N+1\right) $

$ \sum_{n=1}^N n\left(n+1\right) = \dfrac13N\left(N+1\right)\left(N+2\right) $

       $ \vdots $                  $ \vdots $

$ \sum_{n=1}^N \dfrac{\left(n+k\right)!}{\left(n-1\right)!} = \dfrac1{k+2}\cdot\dfrac{\left(N+k+1\right)!}{\left(N-1\right)!}\quad \mathrm{for}\;k\in\mathbb{N} $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch