(8.8 #54)
Line 6: Line 6:
  
 
Thanks.  I'm not really sure that I ''needed'' to use some sort of comparison to show it didn't converge, as it did integrate nicely, but its good to have a second opinion, be that mathematical or otherwise. --[[User:Jmason|John Mason]]
 
Thanks.  I'm not really sure that I ''needed'' to use some sort of comparison to show it didn't converge, as it did integrate nicely, but its good to have a second opinion, be that mathematical or otherwise. --[[User:Jmason|John Mason]]
 +
 +
It does not converge for me either, but Josh, be careful with your comparison.  It's not really valid to use <math>1/\sqrt{x^4}</math> as the function for comparison, because <math>x/\sqrt{x^4} < x/\sqrt{x^4}</math>, albeit infinitesimally less.  I used <math>(g(x) = 1/x^{0.99}) > (f(x) = x/\sqrt{x^4}) </math>, in which case P < 1 and diverges. --[[User:Reckman|Randy Eckman]] 15:44, 26 October 2008 (UTC)

Revision as of 11:44, 26 October 2008

8.8 #54

Does this indefinite integral converge for anyone? Also, if you are having trouble with the integral, take a look at the derivatives of inverse hyperbolic functions. --John Mason

It does not converge for me. I used direct comparison to test whether it converges or not. I started by comparing $ \sqrt{x^4-1} $ and $ \sqrt{x^4} $ It was easy from there. --Josh Visigothsandwich

Thanks. I'm not really sure that I needed to use some sort of comparison to show it didn't converge, as it did integrate nicely, but its good to have a second opinion, be that mathematical or otherwise. --John Mason

It does not converge for me either, but Josh, be careful with your comparison. It's not really valid to use $ 1/\sqrt{x^4} $ as the function for comparison, because $ x/\sqrt{x^4} < x/\sqrt{x^4} $, albeit infinitesimally less. I used $ (g(x) = 1/x^{0.99}) > (f(x) = x/\sqrt{x^4}) $, in which case P < 1 and diverges. --Randy Eckman 15:44, 26 October 2008 (UTC)

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn