(Problem 1: Arbitrary Random Variables)
(Problem 1: Arbitrary Random Variables)
Line 10: Line 10:
 
Let <math>U</math> be a uniform random variable on [0,1].
 
Let <math>U</math> be a uniform random variable on [0,1].
  
*(a) Let <math>X = F^{-1}(U)</math>. What is the CDF of <math>X</math>?  (Note <math>F^{-1}</math> is the inverse of <math>F</math>. A function <math>g</math> is the inverse
+
*(a) Let <math>X = F^{-1}(U)</math>. What is the CDF of <math>X</math>?  (Note <math>F^{-1}</math> is the inverse of <math>F</math>. A function <math>g</math> is the inverse of <math>F</math> if <math>F(g(x)) = x</math> for all <math>x</math>)
 
*(b)How can you generate an exponential random variable from <math>U</math>?
 
*(b)How can you generate an exponential random variable from <math>U</math>?
  

Revision as of 09:01, 15 October 2008

Instructions

Homework 7 can be downloaded here on the ECE 302 course website.

Problem 1: Arbitrary Random Variables

Let $ F $ be a non-decreasing function with

$ \lim_{x\rightarrow -\infty} F(x) = 0 \mbox{ and } \lim_{x\rightarrow +\infty} F(x) = 1. $

Let $ U $ be a uniform random variable on [0,1].

  • (a) Let $ X = F^{-1}(U) $. What is the CDF of $ X $? (Note $ F^{-1} $ is the inverse of $ F $. A function $ g $ is the inverse of $ F $ if $ F(g(x)) = x $ for all $ x $)
  • (b)How can you generate an exponential random variable from $ U $?

Problem 2: Gaussian Generation

Problem 3: A Random Parameter

Problem 4: Debate Date

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood