(Problem 1: Arbitrary Random Variables)
(Problem 1: Arbitrary Random Variables)
Line 8: Line 8:
 
\mbox{ and } \lim_{x\rightarrow +\infty} F(x) = 1.</math>
 
\mbox{ and } \lim_{x\rightarrow +\infty} F(x) = 1.</math>
  
Let $U$ be a uniform random variable on $[0,1]$.
+
Let <math>U</math> be a uniform random variable on [0,1].
\begin{enumerate}
+
 
\item Let $X = F^{-1}(U)$. What is the CDF of $X$?  (Note $F^{-1}$ is the inverse of $F$. A function $g$ is the inverse of $F$ if $F(g(x)) = x$ for all $x$)
+
*(a) Let <math>X = F^{-1}(U)</math>. What is the CDF of <math>X</math>?  (Note <math>F^{-1}</math> is the inverse of <math>F</math>. A function <math>g</math> is the inverse
\item How can you generate an exponential random variable from $U$?
+
*(b)How can you generate an exponential random variable from <math>U</math>?
  
 
== Problem 2: Gaussian Generation ==
 
== Problem 2: Gaussian Generation ==

Revision as of 09:00, 15 October 2008

Instructions

Homework 7 can be downloaded here on the ECE 302 course website.

Problem 1: Arbitrary Random Variables

Let $ F $ be a non-decreasing function with

$ \lim_{x\rightarrow -\infty} F(x) = 0 \mbox{ and } \lim_{x\rightarrow +\infty} F(x) = 1. $

Let $ U $ be a uniform random variable on [0,1].

  • (a) Let $ X = F^{-1}(U) $. What is the CDF of $ X $? (Note $ F^{-1} $ is the inverse of $ F $. A function $ g $ is the inverse
  • (b)How can you generate an exponential random variable from $ U $?

Problem 2: Gaussian Generation

Problem 3: A Random Parameter

Problem 4: Debate Date

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn