(New page: function y = myconv(x1,x2) x3=fliplr(x2); len1=length(x1); len2=length(x2); len3=len1+len2-1; len4=len2-1; y=zeros(1,len3); for q=1:1:len3 q1=q+len4; n2=zeros(1,len3); n2([q...)
 
 
Line 2: Line 2:
 
   
 
   
 
x3=fliplr(x2);  
 
x3=fliplr(x2);  
 +
 
len1=length(x1);  
 
len1=length(x1);  
 +
 
len2=length(x2);  
 
len2=length(x2);  
 +
 
len3=len1+len2-1;  
 
len3=len1+len2-1;  
 +
 
len4=len2-1;  
 
len4=len2-1;  
 +
 
y=zeros(1,len3);  
 
y=zeros(1,len3);  
  
Line 11: Line 16:
 
   
 
   
 
for q=1:1:len3  
 
for q=1:1:len3  
 +
 
q1=q+len4;  
 
q1=q+len4;  
 +
 
n2=zeros(1,len3);  
 
n2=zeros(1,len3);  
 +
 
n2([q:q1])=x3;  
 
n2([q:q1])=x3;  
 +
 
len5=length(n2);  
 
len5=length(n2);  
 +
 
n1=zeros(1,len5);  
 
n1=zeros(1,len5);  
 +
 
n1([len2:len3])=x1;  
 
n1([len2:len3])=x1;  
 +
 
c1=n1.*n2;  
 
c1=n1.*n2;  
 +
 
c2=0;  
 
c2=0;  
 +
 
for i=1:1:len3  
 
for i=1:1:len3  
 +
 
c2=c2+c1([i]);  
 
c2=c2+c1([i]);  
 +
 
end  
 
end  
 +
 
sum=c2  
 
sum=c2  
 +
 
y([q])=sum  
 
y([q])=sum  
 +
 
end  
 
end  
 +
 
   
 
   
 
t=length(y);  
 
t=length(y);  
 +
 
t2=(t-1)/2;  
 
t2=(t-1)/2;  
 +
 
v=-t2:1:t2;  
 
v=-t2:1:t2;  
 +
 
subplot(3,1,1),stem(x1,'g*');  
 
subplot(3,1,1),stem(x1,'g*');  
 +
 
subplot(3,1,2),stem(x2,'b*');  
 
subplot(3,1,2),stem(x2,'b*');  
 +
 
subplot(3,1,3),stem(v,y,'r*');
 
subplot(3,1,3),stem(v,y,'r*');

Latest revision as of 11:09, 1 July 2009

function y = myconv(x1,x2)

x3=fliplr(x2);

len1=length(x1);

len2=length(x2);

len3=len1+len2-1;

len4=len2-1;

y=zeros(1,len3);


for q=1:1:len3

q1=q+len4;

n2=zeros(1,len3);

n2([q:q1])=x3;

len5=length(n2);

n1=zeros(1,len5);

n1([len2:len3])=x1;

c1=n1.*n2;

c2=0;

for i=1:1:len3

c2=c2+c1([i]);

end

sum=c2

y([q])=sum

end


t=length(y);

t2=(t-1)/2;

v=-t2:1:t2;

subplot(3,1,1),stem(x1,'g*');

subplot(3,1,2),stem(x2,'b*');

subplot(3,1,3),stem(v,y,'r*');

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett