Line 20: Line 20:
 
x(t) = <math>\int\limits_{-\infty}^{t}g(\tau)d/tau</math>
 
x(t) = <math>\int\limits_{-\infty}^{t}g(\tau)d/tau</math>
  
<math>X(j*w)=G(j*w)*1/jw^+\pi*G(0)*\delta(w)</math>
+
<math>X(j*w)=G(j*w)*(1/jw)+\pi*G(0)*\delta(w)</math>
  
<math>X(j*w)=1/(j*w)+\pi*G(0)*\delta(w)</math>
+
<math>X(j*w)=(1/(j*w))+\pi*G(0)*\delta(w)</math>

Revision as of 04:40, 9 July 2009

Differentiation

def. x'(t) = j*w*(j*w)

x(t) = $ \int\limits_{-\infty}^{\infty}X(jw)e^{(-\jmath wt)}dt $

diffrentiate both sides

x'(t) = d($ \int\limits_{-\infty}^{\infty}X(jw)e^{(-\jmath wt)}dt $)

x'(t) = j*w*(j*w)

importance

replacing a differentiation operation in the time domain with a multiplication operation in the frequecy domain.

example

x(t) = $ \int\limits_{-\infty}^{t}g(\tau)d/tau $

$ X(j*w)=G(j*w)*(1/jw)+\pi*G(0)*\delta(w) $

$ X(j*w)=(1/(j*w))+\pi*G(0)*\delta(w) $

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman