Line 1: Line 1:
 
== Differentiation ==
 
== Differentiation ==
  
 +
def.
 +
x'(t) = j*w*(j*w)
  
 
x(t) = <math>\int\limits_{-\infty}^{\infty}X(jw)e^{(-\jmath wt)}dt</math>
 
x(t) = <math>\int\limits_{-\infty}^{\infty}X(jw)e^{(-\jmath wt)}dt</math>
Line 13: Line 15:
  
 
replacing a differentiation operation in the time domain with a multiplication operation in the frequecy domain.
 
replacing a differentiation operation in the time domain with a multiplication operation in the frequecy domain.
 +
 +
example
 +
 +
x(t) = <math>\int\limits_{-\infty}^{t}g(\tau)d/tau</math>
 +
 +
<math>X(j*w)=G(j*w)*1/jw^+\pi*G(0)*\delta(w)</math>
 +
 +
<math>X(j*w)=1/(j*w)+\pi*G(0)*\delta(w)</math>

Revision as of 04:40, 9 July 2009

Differentiation

def. x'(t) = j*w*(j*w)

x(t) = $ \int\limits_{-\infty}^{\infty}X(jw)e^{(-\jmath wt)}dt $

diffrentiate both sides

x'(t) = d($ \int\limits_{-\infty}^{\infty}X(jw)e^{(-\jmath wt)}dt $)

x'(t) = j*w*(j*w)

importance

replacing a differentiation operation in the time domain with a multiplication operation in the frequecy domain.

example

x(t) = $ \int\limits_{-\infty}^{t}g(\tau)d/tau $

$ X(j*w)=G(j*w)*1/jw^+\pi*G(0)*\delta(w) $

$ X(j*w)=1/(j*w)+\pi*G(0)*\delta(w) $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett