(New page: Proving the property of Linearity in Fourier Transform: <math>ax(t)+by(t)</math> is linearly related to <math>aX(j\omega)+bY(j\omega)</math>)
 
 
Line 6: Line 6:
  
 
<math>aX(j\omega)+bY(j\omega)</math>
 
<math>aX(j\omega)+bY(j\omega)</math>
 +
 +
 +
Proof:
 +
 +
<math>\mathcal{F}(ax(t))=aX(j\omega) </math> and <math> \mathcal{F}(by(t))=bY(j\omega)</math>
 +
for <math>ax(t)=2\delta(t)</math> and <math>bx(t)=3\delta(t-1)</math> we find that
 +
 +
<math>\mathcal{F}(2\delta(t)=2 </math> and <math>\mathcal{F}(3\delta(t-1)= 3e^{-j\omega}</math>
 +
and that <math>aX+bY = 2+3e^{-j \omega}</math>
 +
Summing the two prior to transform we derive
 +
<math>\mathcal{F}(2\delta(t) + 3\delta(t-1)) = \int_{-\infty}^{+\infty}2\delta(t)+3\delta(t-1)e^{j\omega t}d\omega = 2+3e^{-j \omega} </math>

Latest revision as of 15:17, 8 July 2009

Proving the property of Linearity in Fourier Transform:

$ ax(t)+by(t) $

is linearly related to

$ aX(j\omega)+bY(j\omega) $


Proof:

$ \mathcal{F}(ax(t))=aX(j\omega) $ and $ \mathcal{F}(by(t))=bY(j\omega) $ for $ ax(t)=2\delta(t) $ and $ bx(t)=3\delta(t-1) $ we find that

$ \mathcal{F}(2\delta(t)=2 $ and $ \mathcal{F}(3\delta(t-1)= 3e^{-j\omega} $ and that $ aX+bY = 2+3e^{-j \omega} $ Summing the two prior to transform we derive $ \mathcal{F}(2\delta(t) + 3\delta(t-1)) = \int_{-\infty}^{+\infty}2\delta(t)+3\delta(t-1)e^{j\omega t}d\omega = 2+3e^{-j \omega} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood