(New page: Proving that the Continuous-Time Fourier Transform demonstrates linearity Property: F(a x(t) + b y(t)) = a X(jw) + b Y(jw) Derivation: F(a x(t) + b y(t)) = <math>\int\limits_{-\infty}...)
 
m
 
Line 3: Line 3:
 
Property:
 
Property:
  
F(a x(t) + b y(t)) = a X(jw) + b Y(jw)
+
<math>F(a x(t) + b y(t)) = a X(jw) + b Y(jw) </math>
  
  
 
Derivation:
 
Derivation:
  
F(a x(t) + b y(t)) = <math>\int\limits_{-\infty}^{\infty}[a x(t)+b y(t)] e^{(-jwt)}dt </math>
 
  
F(a x(t) + b y(t)) = <math>\int\limits_{-\infty}^{\infty}a x(t) e^{(jwt)}dt + \int\limits_{-\infty}^{\infty}b y(t) e^{(-jwt)}dt </math>
+
<math>F(a x(t) + b y(t)) = \int\limits_{-\infty}^{\infty}[a x(t)+b y(t)] e^{(-jwt)}dt </math>
  
F(a x(t) + b y(t)) = <math>a \int\limits_{-\infty}^{\infty}x(t) e^{(jwt)}dt + b \int\limits_{-\infty}^{\infty}y(t) e^{(-jwt)}dt </math>
 
  
F(a x(t) + b y(t)) = a X(jw) + b Y(jw) (definition of linearity)
+
<math>F(a x(t) + b y(t)) = \int\limits_{-\infty}^{\infty}a x(t) e^{(jwt)}dt + \int\limits_{-\infty}^{\infty}b y(t) e^{(-jwt)}dt </math>
 +
 
 +
 
 +
<math>F(a x(t) + b y(t)) = a \int\limits_{-\infty}^{\infty}x(t) e^{(jwt)}dt + b \int\limits_{-\infty}^{\infty}y(t) e^{(-jwt)}dt </math>
 +
 
 +
 
 +
<math>F(a x(t) + b y(t)) = a X(jw) + b Y(jw) </math> (definition of linearity)

Latest revision as of 04:45, 9 July 2009

Proving that the Continuous-Time Fourier Transform demonstrates linearity

Property:

$ F(a x(t) + b y(t)) = a X(jw) + b Y(jw) $


Derivation:


$ F(a x(t) + b y(t)) = \int\limits_{-\infty}^{\infty}[a x(t)+b y(t)] e^{(-jwt)}dt $


$ F(a x(t) + b y(t)) = \int\limits_{-\infty}^{\infty}a x(t) e^{(jwt)}dt + \int\limits_{-\infty}^{\infty}b y(t) e^{(-jwt)}dt $


$ F(a x(t) + b y(t)) = a \int\limits_{-\infty}^{\infty}x(t) e^{(jwt)}dt + b \int\limits_{-\infty}^{\infty}y(t) e^{(-jwt)}dt $


$ F(a x(t) + b y(t)) = a X(jw) + b Y(jw) $ (definition of linearity)

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett