(New page: '''''Linearity'' - Property of Continuous Time Fourier Transform''' Linearity States that the FT of {a*x(t)+b*y(t)} will be equal to {a*X(w)+b*Y(w)} if the signal is truly linear. '''Gen...)
 
Line 1: Line 1:
 
'''''Linearity'' - Property of Continuous Time Fourier Transform'''
 
'''''Linearity'' - Property of Continuous Time Fourier Transform'''
  
Linearity States that the FT of {a*x(t)+b*y(t)} will be equal to {a*X(w)+b*Y(w)} if the signal is truly linear.
+
Linearity States that the <math>\mathcal{F}</math> of {a*x(t)+b*y(t)} will be equal to {a*X(w)+b*Y(w)} if the signal is truly linear.
  
'''General Derivation:''' <math>FT=\int\limits_{-\infty}^{\infty}x(t)e^{(-\jmath wt)}dt</math>
+
'''General Derivation:''' <math>\mathcal{F}=\int\limits_{-\infty}^{\infty}x(t)e^{(-\jmath wt)}dt</math>
* If z(t) = {a*x(t)+b*y(t)}, then the FT is <math>Z(w)=\int\limits_{-\infty}^{\infty}(a*x(t)+b*y(t))e^{(-\jmath wt)}dt</math>
+
* If z(t) = {a*x(t)+b*y(t)}, then the <math>\mathcal{F}</math> is <math>Z(w)=\int\limits_{-\infty}^{\infty}(a*x(t)+b*y(t))e^{(-\jmath wt)}dt</math>
 
** <math>Z(w)=\int\limits_{-\infty}^{\infty}a*x(t)e^{(-\jmath wt)}dt+\int\limits_{-\infty}^{\infty}b*y(t)e^{(-\jmath wt)}dt</math>
 
** <math>Z(w)=\int\limits_{-\infty}^{\infty}a*x(t)e^{(-\jmath wt)}dt+\int\limits_{-\infty}^{\infty}b*y(t)e^{(-\jmath wt)}dt</math>
 
*** <math>Z(w)=a\int\limits_{-\infty}^{\infty}x(t)e^{(-\jmath wt)}dt+b\int\limits_{-\infty}^{\infty}y(t)e^{(-\jmath wt)}dt</math>
 
*** <math>Z(w)=a\int\limits_{-\infty}^{\infty}x(t)e^{(-\jmath wt)}dt+b\int\limits_{-\infty}^{\infty}y(t)e^{(-\jmath wt)}dt</math>
Line 11: Line 11:
  
 
'''Example:'''
 
'''Example:'''
 +
Signal <math>x(t)=1, 0<t\le1; 2, 1<t\le2; 0, else=u(t)+u(t-1)-2u(t-2)</math>
 +
* <math>\mathcal{F} of x(t)=X(w)=\mathcal{F}{[u(t)+u(t-1)-2u(t-2)]}</math>
 +
** <math>X(w)=\mathcal{F}{[u(t)]}+\mathcal{F}{[u(t-1)]}-2\mathcal{F}{[u(t-2)]}</math>
 +
*** <math>X(w)=\mathcal{F}{[u(t)]}+e^{(-\jmath w)}\mathcal{F}{[u(t)]}-2e^{(-\jmath 2w)}\mathcal{F}{[u(t)]}</math> by Time Shifting Property from Table 4.1, page 328.
 +
**** <math>X(w)=\mathcal{F}{[u(t)]}{[1+e^{(-\jmath w)}-2e^{(-\jmath 2w)}]}</math>
 +
***** By table look-up, <math>\mathcal{F}{[u(t)]}={[\frac{1}{\jmath w}+\pi\delta{(w)}]}</math>
 +
****** Therefore, <math>X(w)={[\frac{1}{\jmath w}+\pi\delta{(w)}]}{[1+e^{(-\jmath w)}-2e^{(-\jmath 2w)}]}</math>

Revision as of 08:23, 8 July 2009

Linearity - Property of Continuous Time Fourier Transform

Linearity States that the $ \mathcal{F} $ of {a*x(t)+b*y(t)} will be equal to {a*X(w)+b*Y(w)} if the signal is truly linear.

General Derivation: $ \mathcal{F}=\int\limits_{-\infty}^{\infty}x(t)e^{(-\jmath wt)}dt $

  • If z(t) = {a*x(t)+b*y(t)}, then the $ \mathcal{F} $ is $ Z(w)=\int\limits_{-\infty}^{\infty}(a*x(t)+b*y(t))e^{(-\jmath wt)}dt $
    • $ Z(w)=\int\limits_{-\infty}^{\infty}a*x(t)e^{(-\jmath wt)}dt+\int\limits_{-\infty}^{\infty}b*y(t)e^{(-\jmath wt)}dt $
      • $ Z(w)=a\int\limits_{-\infty}^{\infty}x(t)e^{(-\jmath wt)}dt+b\int\limits_{-\infty}^{\infty}y(t)e^{(-\jmath wt)}dt $
        • Since $ X(w)=\int\limits_{-\infty}^{\infty}x(t)e^{(-\jmath wt)}dt $ (Same for Y(w))
          • Therefore, $ Z(w)=a*X(w)+b*Y(w) $

Example: Signal $ x(t)=1, 0<t\le1; 2, 1<t\le2; 0, else=u(t)+u(t-1)-2u(t-2) $

  • $ \mathcal{F} of x(t)=X(w)=\mathcal{F}{[u(t)+u(t-1)-2u(t-2)]} $
    • $ X(w)=\mathcal{F}{[u(t)]}+\mathcal{F}{[u(t-1)]}-2\mathcal{F}{[u(t-2)]} $
      • $ X(w)=\mathcal{F}{[u(t)]}+e^{(-\jmath w)}\mathcal{F}{[u(t)]}-2e^{(-\jmath 2w)}\mathcal{F}{[u(t)]} $ by Time Shifting Property from Table 4.1, page 328.
        • $ X(w)=\mathcal{F}{[u(t)]}{[1+e^{(-\jmath w)}-2e^{(-\jmath 2w)}]} $
          • By table look-up, $ \mathcal{F}{[u(t)]}={[\frac{1}{\jmath w}+\pi\delta{(w)}]} $
            • Therefore, $ X(w)={[\frac{1}{\jmath w}+\pi\delta{(w)}]}{[1+e^{(-\jmath w)}-2e^{(-\jmath 2w)}]} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett