Line 11: Line 11:
 
The coefficients of the transformed function are then
 
The coefficients of the transformed function are then
  
<math>\frac{1}{T}\int_T x(t)e^{-jkw_0(t-t_0)}dt</math>
+
<math>\frac{1}{T}\int_T x(t-t_0)e^{-jkw_0t}dt</math>
  
<math>=\frac{1}{T}\int_T x(t)e^{-jkw_0t}e^{jkw_0t_0}dt</math>
+
Substituting <math>\tau = t - t_0</math> into the equation results in
 +
 
 +
<math>=\frac{1}{T}\int_T x(\tau)e^{-jkw_0(\tau+t_0}d\tau</math>
 +
 
 +
<math>=\frac{1}{T}\int_T x(\tau)e^{-jkw_0(\tau}e^{-jkw_0(t_0}d\tau</math>
 +
 
 +
Because <math>e^{-jkw_0(t_0}</math> is constant over <math>\tau</math> it can be factored out of the integral
 +
 
 +
<math>=e^{-jkw_0(t_0}\frac{1}{T}\int_T x(\tau)e^{-jkw_0(\tau}d\tau</math>
  
 
<math></math>
 
<math></math>

Revision as of 16:54, 8 July 2009

Time Shifting Property

The time shifting property states that if the periodic signal $ x(t) $ is shifted by $ t_0 $ to created the shifted signal $ x(t-t_0) $, the Fourier series coefficients of the shifted will be $ a_k e^{-jkw_0t_0} $, where $ a_k $ are the coefficients of $ x(t) $.

Proof

Let $ a_k $ be the Fourier series coefficients of $ x(t) $, so

$ a_k=\frac{1}{T}\int_T x(t)e^{-jkw_0t}dt $

The coefficients of the transformed function are then

$ \frac{1}{T}\int_T x(t-t_0)e^{-jkw_0t}dt $

Substituting $ \tau = t - t_0 $ into the equation results in

$ =\frac{1}{T}\int_T x(\tau)e^{-jkw_0(\tau+t_0}d\tau $

$ =\frac{1}{T}\int_T x(\tau)e^{-jkw_0(\tau}e^{-jkw_0(t_0}d\tau $

Because $ e^{-jkw_0(t_0} $ is constant over $ \tau $ it can be factored out of the integral

$ =e^{-jkw_0(t_0}\frac{1}{T}\int_T x(\tau)e^{-jkw_0(\tau}d\tau $






Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett