Line 8: Line 8:
  
 
<math>a_k=\frac{1}{T}\int_T x(t)e^{-jkw_0t}dt</math>
 
<math>a_k=\frac{1}{T}\int_T x(t)e^{-jkw_0t}dt</math>
 +
 +
The coefficients of the transformed function are then
 +
 +
<math>\frac{1}{T}\int_T x(t)e^{-jkw_0(t-t_0)}dt</math>
 +
 +
<math>=\frac{1}{T}\int_T x(t)e^{-jkw_0t}e^{jkw_0t_0}dt</math>
 +
 +
<math></math>
 +
 +
<math></math>
 +
 +
<math></math>
 +
 +
<math></math>
 +
 +
<math></math>

Revision as of 16:45, 8 July 2009

Time Shifting Property

The time shifting property states that if the periodic signal $ x(t) $ is shifted by $ t_0 $ to created the shifted signal $ x(t-t_0) $, the Fourier series coefficients of the shifted will be $ a_k e^{-jkw_0t_0} $, where $ a_k $ are the coefficients of $ x(t) $.

Proof

Let $ a_k $ be the Fourier series coefficients of $ x(t) $, so

$ a_k=\frac{1}{T}\int_T x(t)e^{-jkw_0t}dt $

The coefficients of the transformed function are then

$ \frac{1}{T}\int_T x(t)e^{-jkw_0(t-t_0)}dt $

$ =\frac{1}{T}\int_T x(t)e^{-jkw_0t}e^{jkw_0t_0}dt $






Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009