(6 intermediate revisions by the same user not shown)
Line 2: Line 2:
  
 
The time shifting property states that if the periodic signal <math>x(t)</math> is shifted by <math>t_0</math> to created the shifted signal <math>x(t-t_0)</math>, the Fourier series coefficients of the shifted will be <math>a_k e^{-jkw_0t_0}</math>, where <math>a_k</math> are the coefficients of <math>x(t)</math>.
 
The time shifting property states that if the periodic signal <math>x(t)</math> is shifted by <math>t_0</math> to created the shifted signal <math>x(t-t_0)</math>, the Fourier series coefficients of the shifted will be <math>a_k e^{-jkw_0t_0}</math>, where <math>a_k</math> are the coefficients of <math>x(t)</math>.
 +
 +
===Proof===
 +
 +
Let <math>a_k</math> be the Fourier series coefficients of <math>x(t)</math>, so
 +
 +
<math>a_k=\frac{1}{T}\int_T x(t)e^{-jkw_0t}dt</math>
 +
 +
The coefficients of the transformed function are then
 +
 +
<math>\frac{1}{T}\int_T x(t-t_0)e^{-jkw_0t}dt</math>
 +
 +
Substituting <math>\tau = t - t_0</math> into the equation results in
 +
 +
<math>=\frac{1}{T}\int_T x(\tau)e^{-jkw_0(\tau+t_0}d\tau</math>
 +
 +
<math>=\frac{1}{T}\int_T x(\tau)e^{-jkw_0(\tau}e^{-jkw_0(t_0}d\tau</math>
 +
 +
Because <math>e^{-jkw_0t_0}</math> is constant over <math>\tau</math> it can be factored out of the integral
 +
 +
<math>=(e^{-jkw_0t_0})\frac{1}{T}\int_T x(\tau)e^{-jkw_0(\tau}d\tau</math>
 +
 +
By substitution of <math>a_k=\frac{1}{T}\int_T x(t)e^{-jkw_0t}dt</math> he coefficients of the transformed function can then be set to equal
 +
 +
<math>a_k e^{-jkw_0t_0}</math>
 +
 +
Thereby proving the time shifting property
 +
 +
 +
 +
--[[User:Asiembid|Adam Siembida (asiembid)]] 20:57, 8 July 2009 (UTC)

Latest revision as of 16:58, 8 July 2009

Time Shifting Property

The time shifting property states that if the periodic signal $ x(t) $ is shifted by $ t_0 $ to created the shifted signal $ x(t-t_0) $, the Fourier series coefficients of the shifted will be $ a_k e^{-jkw_0t_0} $, where $ a_k $ are the coefficients of $ x(t) $.

Proof

Let $ a_k $ be the Fourier series coefficients of $ x(t) $, so

$ a_k=\frac{1}{T}\int_T x(t)e^{-jkw_0t}dt $

The coefficients of the transformed function are then

$ \frac{1}{T}\int_T x(t-t_0)e^{-jkw_0t}dt $

Substituting $ \tau = t - t_0 $ into the equation results in

$ =\frac{1}{T}\int_T x(\tau)e^{-jkw_0(\tau+t_0}d\tau $

$ =\frac{1}{T}\int_T x(\tau)e^{-jkw_0(\tau}e^{-jkw_0(t_0}d\tau $

Because $ e^{-jkw_0t_0} $ is constant over $ \tau $ it can be factored out of the integral

$ =(e^{-jkw_0t_0})\frac{1}{T}\int_T x(\tau)e^{-jkw_0(\tau}d\tau $

By substitution of $ a_k=\frac{1}{T}\int_T x(t)e^{-jkw_0t}dt $ he coefficients of the transformed function can then be set to equal

$ a_k e^{-jkw_0t_0} $

Thereby proving the time shifting property


--Adam Siembida (asiembid) 20:57, 8 July 2009 (UTC)

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach