(New page: Adam Frey Proof of ''Parseval's Relation'' in Continuous-Time Transform 4.3.7 If x(t) and X(jt) are a Fourier transform pair, then : <math> \int_{-\infty}^\infty |x(t)|^2\,dt = \fr...)
 
 
Line 20: Line 20:
 
   
 
   
 
<math>  \int_{-\infty}^\infty |x(t)|^2\,dt  =  \frac{1}{2\pi}  \int_{-\infty}^\infty | X(jw) |^2 dw </math>
 
<math>  \int_{-\infty}^\infty |x(t)|^2\,dt  =  \frac{1}{2\pi}  \int_{-\infty}^\infty | X(jw) |^2 dw </math>
 +
 +
 +
Back to [[Homework 3]]

Latest revision as of 11:13, 8 July 2009

Adam Frey

Proof of Parseval's Relation in Continuous-Time Transform 4.3.7

If x(t) and X(jt) are a Fourier transform pair, then :

$ \int_{-\infty}^\infty |x(t)|^2\,dt = \frac{1}{2\pi} \int_{-\infty}^\infty |X(jw)|^2\,dw $

This is known as Parseval's Relation and results from direct application of the Fourier transform :

$ \int_{-\infty}^\infty |x(t)|^2\,dt = \int_{-\infty}^\infty x(t)x^*(t)\,dt $

 $  =   \int_{-\infty}^\infty    x(t)[ \frac{1}{2\pi}   \int_{-\infty}^\infty X^* (jw)e^{(-jwt)} dw   ]dt       $

Reversing the order of integration results in:

$ \int_{-\infty}^\infty |x(t)|^2\,dt = \frac{1}{2\pi} \int_{-\infty}^\infty X^*(jw) [ \int_{-\infty}^\infty x(t) e^{(-jwt)} dt ]dw $

The bracketed term is simply the Fourier transform of x(t); therefore,

$ \int_{-\infty}^\infty |x(t)|^2\,dt = \frac{1}{2\pi} \int_{-\infty}^\infty | X(jw) |^2 dw $


Back to Homework 3

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett